
LATEX Dogwagger
[A different approach to documentation]

Version 2.1.1

J.M. van Schalkwyk

February 27, 2009

Contents

1 Introduction 2
1.1 Advantages of Dogwagger. 3
1.2 Disadvantages of Dogwagger. 3
1.3 GNU Public Licence . 4

2 How to use Dogwagger 5
2.1 Making multiple files. 6
2.2 Suppressing unwantedverbatimsections. 6
2.3 Minor frills and restrictions. 6
2.4 Deferred code. 7
2.5 Including binary files. 8
2.6 Making a debug version!. 8

3 The source code of Dogwagger 10
3.1 Initialisation. 10

4 Creating the main window 11

5 The principal function 13
5.1 Preliminaries . 13
5.2 Finding the header line. 14
5.3 Checking the version. 14
5.4 Opening the target file. 15
5.5 Read source and process. 15

6 Reading the header 21

1

CONTENTS 2

7 Miscellaneous routines 23
7.1 Confirm an action. 23
7.2 Alert .23
7.3 Caution — Alert with print. 24
7.4 Read the time. 24
7.5 Farewell. 24
7.6 A clumsy error-related hack. 24
7.7 Debugging. 25
7.8 More debugging. 25
7.9 Ask — datum input. 25
7.10 Store array of lines. 26
7.11 Section labelling . 27
7.12 Check for unresolved dependencies. 29

8 Handling of Multiple files 30
8.1 Open the target. 30
8.2 Close file . 31

9 Trivial amendments 32
9.1 Print a section header. 32

10 Binary encoding and decoding 33
10.1 UUdecode. 33
10.2 UUdecoding. 34

11 Change log 37
11.1 Changes in version 2.0. 37
11.2 Changes in version 2.1. 37

1 INTRODUCTION 3

1 Introduction

LATEX Dogwagger is a solution to a pernicious problem. All too often program-
mers write a magnificent program, and thendocumenttheir creation as a sort of
‘addendum’. Put another way, the documentation is separate and looks tacked on,
something like the stumpy, customarily docked tail of a large rottweiler. Dogwag-
ger tries to address this by integrating the documentation and the program. The
program becomes something which is pulled out of the documentation, rather than
the other way around.

For example, in the wonderful programming language Perl, there’s a variety
of conventions that allow you to mark sections of the program with an equals sign,
followed by a name. All of the subsequent code is ignored by Perl until a magic
line beginning with the expression=cut is encountered. A separate program
can then be used to pull out thecut sections and assemble them into some sort
of documentation. This approach is called POD, or ‘Plain Old Documentation’.
Dogwagger, although it is written in Perl, is somewhat more sophisticated.1

Here’s a short list of Dogwagger features:

• Complete code can be generated for a variety of languages, including C,
C++, Perl, and so forth;

• Multiple files can be produced on demand, for example C++ .CPP files, and
.H header files;

• Binary code can be turned into files, where required.

• The tail wags the dog.

The last feature simply means that the source code which magically generates
these files isalso the documentation. Documentation is always written in LATEX,
because we believe LATEX is the best way of producing elegant documentation. We
simply place all relevantcodeinside the LATEX source code, withinverbatim
statements. When you submit this source code to LATEX, it makes an appropriate
document (we normally create PDF documents, for great Web portability). When
you submit the same source code to DogWagger, it magically creates all of the
relevant Perl, C++ or other files.

1In the sense of being smart and somewhat elegant, not in the original meaning of the word
which is ‘mixed up’. Well, come to think of it, we do mix things up slightly, but that’s another
story!

1 INTRODUCTION 4

1.1 Advantages of Dogwagger

These are many:

• All program code and documentation is seamlessly integrated;

• Updates are concurrent. You can update program and documentation at one
go, and generate programor documentation by simply submitting the same
file to either LATEX or Dogwagger;

• Binary code is integrated (as required) with other code, without needing
fancy tools or many different types of file;

• As Dogwagger is available under the GNU public licence, it’ll aways be
freely available without charge.

The source code of this file (Dogwagger21.tex) is available under the GNU
public licence for download fromanaesthetist.com.

1.2 Disadvantages of Dogwagger

There are a few:

• If you can’t write LATEX, you’re stuffed. (Learn LATEX)!

• You have to know how to run a Perl program. At the command line say:
perl dogwagger21.pl

• Your expensive word processor may give you more trouble with editing
the .TEX source than an inexpensive (WinEdt) or free (MSDos Edit, vim,
Notepad) word processor.2

• If you wish to generate binary files and include them in your documenta-
tion/program, you’ll have to find a program which can UUencode. Gosh.
Here’s one!

• The pressure is now on you to produce good documentation. Is this a dis-
advantage? Microsoft might think so!

• You have to include all of the code for the program. Is this a disadvantage?

Now let’s explore how Dogwagger actually works. But first, an important
note. . .

2This is sure to bring out the inadequacies of people whosimply mustdrive big cars, fast yachts,
or fancy word processors!

http://www.anaesthetist.com/mnm/dogwagger/index.htm

1 INTRODUCTION 5

1.3 GNU Public Licence

This program is distributed under the Gnu Public Licence (GPL). A copy should
accompany any distribution. For details of the GPL, seeAppendix A, at the end
of this document.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Pub-
lic License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

2 HOW TO USE DOGWAGGER 6

2 How to use Dogwagger

If you read the LATEX source forthis file, then you’ll see Dogwagger in action! But
to get a bit more than a flavour read the following documentation thoroughly. The
basic idea is something like this:

1. Create your LATEX documentation;

2. Insert arbitrary chunks of program within the documentation as\verbatim
comments — these chunks will eventually all be concatenated into one long
program file!

3. Dress things up a little.

That’s really it. The dressing up is very easy indeed. The onlyreally important
piece of dressing up is something which must be inserted in the first four lines of
the file. We call it thetitle line, and it runs like this:

% LaTeX DogWagger version=‘2.1.1’ fileTarget=‘foo.pl’

If such a line isn’t present, and you submit a file for Dogwagger to parse,
then she will complain bitterly. You’ll also get warnings if the version num-
ber is wrong. See how, in LATEX-like style, we submit parameters in between
a ‘backtick’ and a conventional single quote! ThefileTarget instruction is
self-explanatory.

There are a two other parameters you will almost certainly use on this impor-
tant title line. They are:

• startComment=‘#’

• noWarn=‘yes’

ThestartComment option specifies how lines will be commented out. This
is important because DogWagger normally writes a few lines at the start of a gen-
erated file saying where the file came from and when it was created. In addition,
separate sections in the generated program code are separated by comments.

Different programming languages use different character sequences to signal
a comment line — for example, C++ uses a double slash// , and Perl uses a hash
character#, otherwise known as a ‘pound’ or even a ‘tictactoe’! As most grown
up C compilers also now permit the// convention, we’ve not implemented the
old-fashioned, ugly C/* comment style*/ . The default comment character is
the Perl one, which is worse than useless if you happen to be creating C++ files.

By default, Dogwagger kindly warns you before it overwrites files, but you
can override this behaviour usingnoWarn .

2 HOW TO USE DOGWAGGER 7

2.1 Making multiple files

Part of the way through your code, you may wish to terminate the current program
file you’re creating (and documenting), and start a new file. For example, you may
have discussed (and created) the main CPP program, and now wish to do the same
for the .H header file. This is pretty easy. In the lineimmediately precedingthe
nextverbatim section, insert a commented line like the following:

% DogWagger newTarget=‘foobar.h’ newComment=‘//’

We will refer to such a line aspreamble. Remember to comment the line out
in LATEX using a percentage character as thefirst characterof the preamble line.
See how we usenewComment andnewTarget to remind ourselves that this
isn’t the first file specified in the title line, but a subsequent one.

Files within directories

We deliberately don’t encourage files generated by DogWagger to be written to
obscure locations. They should generally be placed in the current directory, but if
a subdirectory exists, then the files can be written to that subdirectory thus:

% DogWagger newTarget=‘foo/bar.c’ newComment=‘//’

This statement creates the filebar.c in the subdirectoryfoo.

2.2 Suppressing unwantedverbatimsections

Within your normal LATEX documentation, you may wish to include averbatim
section whichmust notappear within the final program you will generate. Here’s
how:

% DogWagger dogsAllowed=‘no’

Simply insert the above line immediately prior to the verbatim section you
wish to suppress!

2.3 Minor frills and restrictions

Eachverbatim section begins with\begin{verbatim} and ends with
\end{verbatim} . In between theremustbe at least one whole line of data,
otherwise DogWagger will choke. Another minor irritation is that even if ver-
batim statements have been commented out in LATEX, they will still be seen by
DogWagger (we might consider revising this)!

2 HOW TO USE DOGWAGGER 8

There are several little conveniences in DogWagger. You can label the com-
ment at the start of each section using a line like the followingimmediately pre-
cedingaverbatim section:

% DogWagger sectionTitle=‘Fred’

Again, the line preceding the verbatim section is commented out in LATEX. We
then usesectionTitle to provide a label. We can do slightly more fancy
things:

% DogWagger sectionTitle=‘Fred: Section $[SECTION]’

. . . which actually uses Dogwagger’s internal section counter to replace
$[SECTION] with the relevant section number.

Writing code as a single line

Occasionally it’s convenient to write several lines of verbatim text as a single line
of output. Dogwagger to the rescue with theoneLine=‘yes’ command! Note
that in this mode, trailing spaces count, but the leading spaces on the next line are
removed. All other whitespace is preservedas is.

2.4 Deferred code

In version 2.0 of Dogwagger, we introduced the ability to move code sections
down below other sections. In other words, we can nowdeferwriting of a code
section until other sections on which itdependshave been written to the output
file.

For example, when discussing SQL code, we might wish to talk about the
main table first, but in the final code we will first want to define the minor tables
on which the main table depends!

To make use of this facility, use the following commands:

% DogWagger dependsOn=‘alpha’

. . . or even, if something depends on several other sections:

% DogWagger dependsOn=‘alpha,beta,gamma’

The name of the section depended on is then given by:

% DogWagger myName=‘alpha’

When a dependsOn statement is encountered the assumption is made thatall

2 HOW TO USE DOGWAGGER 9

of the names depended on havenot yet been defined! If any of them had already,
then the smart user would simply leave them out!

Note that an item can have both a myName and dependsOn values. In this case,
the name is kept pending until all dependsOn values have been fulfilled, at which
point the item is written to output, and then only is the name of the item itself
resolved. (Self-dependence will necessarily result in an unresolved dependency,
and thus an error).

2.5 Including binary files

Occasionally it may be necessary to include a binary file with your source code.
Because such files are inscrutable (and potentially harmful) this is a practice to
avoid, but unfortunately it’s sometimes vital to include small binary files. Dog-
wagger meets this need by allowing UUencoded files to be included inverbatim
sections thus:

% DogWagger newTarget=‘uudecode’

In other words, the only ‘filename’ which is reserved isuudecode . If this
name is specified, then (as is usual for uunecoded files) the filename is picked out
of the subsequent uuencoded information (located within the verbatim statement).
You’ll find a (uuencoded) uunecoding program inAppendix B!

Note that for reasons best know to us (if at all) that the first file specified (in
the header line)cannotbe a uuencoded file. Regard this as a feature rather than a
bug!

2.6 Making a debug version!

Here’s a command which you canonly include in the title line:

• include=‘everything’

This wrinkle allows us to create two versions of code, adebugversion, and a
production version. By default, if youomit the above command from the title line,
then the production version is created. If you include it, then we make a debug
version. And what’s the difference? Well, if Dogwagger encounters a line within
averbatim section which begins with the sequence:

+OPTIONAL

. . . then by default all of the code (including the OPTIONAL statement itself)
is omitteduntil the terminating sequence:

2 HOW TO USE DOGWAGGER 10

-OPTIONAL

is encountered later on. ‘Including everything’ forces Dogwagger to include
the optional code contained between these two keywords.

In many languages, there are ways of creating debug versions, for example the
C++ #define followed by#ifdef and so on, but our way is more explicit and
simpler.3

3We considered having an optional parameter after the OPTIONAL statement to allow multiple
versions, but rejected this as extremely silly.

3 THE SOURCE CODE OF DOGWAGGER 11

3 The source code of Dogwagger

Here’s the Dogwagger version 2.1 code. Run the program from the command line
using

perl Dogwagger21.pl

First we have the conventional shebang line, followed by the packages re-
quired. We use the Tk toolkit to give us a simple graphical user interface.

#!/usr/local/bin/perl -w

use strict;
use Tk;
require Tk::Dialog;
require Tk::Toplevel;
require Tk::Font;

This program is distributed under the Gnu Public Licence (GPL).
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

my $ERR; # ugly global error;
my $ERRCOUNT; # similarly nasty;
my $LINECOUNT; # this is also a nasty global;
my $SECTIONTITLE; # me too.

my $MAJORVERSION = 2;
my $MINORVERSION = 1;
my $TINYVERSION = 1; # version 2.1.1
my $BUG = 0; # are we debugging (0=no)

3.1 Initialisation

We keep a record of what happened in a fileWAGLOG.LOG. After getting the
time (and printing it), we create version 2.0 arrays for deferred writing of code
(See section2.4).

my $filelog;
$filelog="WAGLOG.LOG";
open FILELOG, ">$filelog" or

die "*CRASH* Could not open LOG $filelog :$!\n";
print FILELOG "LaTeX DogWagger, Version \

$MAJORVERSION.$MINORVERSION.$TINYVERSION\n";

4 CREATING THE MAIN WINDOW 12

my $TODAY = &GetLocalTime();
print ("\n TODAY: $TODAY\n");
my @CHILDREN;
my @DEPENDENCIES;
my @PENDINGNAME;

The deferred arrays are CHILDREN (an array of sections which depend on
other named sections, and haven’t yet been written to file), DEPENDENCIES
which stores the corresponding namesdepended on, and PENDINGNAME, which
stores the name of each child, if that child has a name.

Each child contains multiple lines which will only be written to file when all of
the dependencies of the child have been satisfied. As each name is encountered,
it is removed from each dependency list where it occurs. If a dependency list
becomes EMPTY in this process, the corresponding item is written to output.

4 Creating the main window

Next, we use Tk to open up a user interface. The ugly global variablefred is
used for filename input — how imaginative!

my $fred; # file name
$fred = "";

my $MAINW = new MainWindow;
$MAINW->geometry(’300x200’); # dimensions
$MAINW->geometry(’+80+30’); # screen offset!
$MAINW->title(

"DogWagger Version $MAJORVERSION.$MINORVERSION.$TINYVERSION");
$MAINW->focusFollowsMouse; # change focus mode

my $FIRSTARG;
$FIRSTARG = $ARGV[0]; # allow command line for simple stuff!
if ((defined $FIRSTARG) && ((length $FIRSTARG) > 0))

{ # &Alert ($MAINW, "First argument is $FIRSTARG");
$fred = $FIRSTARG;

}

We put the control buttons in a separate frame in the main Tk window.

my $bottomFrame = $MAINW->Frame();
$MAINW->Label(-text => ’Enter source file name’)->pack();

my $txt = $MAINW->Entry(-textvariable => \$fred)->pack(-padx => 50,
-pady => 15,
-ipadx => 5);

$txt->configure (-validatecommand => [\&CheckFred, $MAINW],

4 CREATING THE MAIN WINDOW 13

-validate => ’focusout’);
my $goBut = $MAINW->Button(-text => ’Wag’,

-command => [\&WagTheDog, $MAINW]);
$goBut->configure(-background => ’green’);
$goBut->configure(-width => 20);

my $quitBut = $bottomFrame->Button(-text => ’Quit’,
-command => [\&ByeForNow, $MAINW]);

$quitBut->configure(-background => ’red’);
$quitBut->configure(-width => 20);

$quitBut->pack();
$goBut->pack();
$goBut->focus(); # version 2.1
$bottomFrame->pack(-side => ’bottom’, -fill => ’both’,

-pady => 20);
MainLoop;

The controls are really simple — a text Entry box for the file name, an exe-
cution (‘Wag’) button, and a red quit button. And that’s really that for the main
section. Next we have the main function which does the ‘wagging work’.

5 THE PRINCIPAL FUNCTION 14

5 The principal function

As the name suggests,WagTheDogdoes the work. There are several ugly fea-
tures apart from its length, including use of the nasty globalfred . We submit the
current window,thisW .

sub WagTheDog
{

my($thisW);
($thisW)=@_;

my ($MANDATORY, $OPTN);
$OPTN = 0; # default is capture
print FILELOG "\n ------------------------";
&Debug($thisW, "\n\n You specified <$fred>\n");
if (length $fred < 1)

{ &Alert($thisW, "First enter file name, e.g. PerlPgm.tex");
return;

};
my($FRED, $hotline, $i);
$FRED = $fred;
$ERRCOUNT = 0;

5.1 Preliminaries

After some debugging statements and a check for the presence of a filename string,
we clear the various arrays, and set upmyNam, which stores a pending name about
to be resolved. We only ’resolve’ myNam once the code associated with the name
has beenwritten, at which point all of the dependent code is written, if indicated.

@CHILDREN = ();
@DEPENDENCIES = ();
@PENDINGNAME = ();

$CHILDREN[0]=’’;
$DEPENDENCIES[0]=’’;
$PENDINGNAME[0]=’’;

my($myNam);

Let’s open the source file, failing if this opening fails:

$LINECOUNT = 0;
$ERR = 0; #hideous

open FRED, $FRED
or &GlobalError("Could not open source $FRED :$!");

if ($ERR)
{ $ERRCOUNT ++; # bump error count

&Alert($thisW, $ERR);
return;

};

5 THE PRINCIPAL FUNCTION 15

5.2 Finding the header line

Next, scan through the first four lines for the header line, failing if the header line
isn’t found.

$i = 4;
while ($i > 0)

{ $_ = <FRED>;
$LINECOUNT ++;
&Debug($thisW, "$_");
if (/\%.*LaTeX DogWagger/)

{ $i = 0; # force end
};

$i --;
};

if (! $i) # if DogWagger found, $i should be -1.
{ &Caution($thisW, "DogWagger data not found in <$fred>");

close FRED;
return;

};
$hotline = $_; # redundant

Okay, we could even look for sequences such as\%, but we won’t get too anal.

5.3 Checking the version

We check for version compatibility, and also extract the name of the target file,
comment character sequence, and warning/mandatory flags. TheMANDATORY
variable tells us whether to insert debug code (bracketed by +/- OPTIONAL state-
ment lines).

my ($version, $DOGFILE, $startComment, $nowarn,
$startFileTxt, $endFileTxt, $sft, $eft,
$endComment);

my($majorVersion, $minorVersion);
$startFileTxt = ’’;
$endFileTxt = ’’;

The four variables $startFileTxt, $endFileTxt, $sft and $eft were added in
version 2.1. They allow start and end text to be inserted into a file. The way we
work things, the values are reset to the null string after the closure of the current
file, so for each file with starting and/or ending text, the values must be specified
anew!

5 THE PRINCIPAL FUNCTION 16

($version, $DOGFILE, $startComment, $nowarn, $MANDATORY,
$sft, $eft, $endComment) = &ReadHeader($hotline);

if (! $MANDATORY)
{ &Debug($thisW, "\n Optional text NOT included");
};

$_ = $version;
/(.+)\.(.+)\.(.+)/; # pull out major and minor version numbers:
$majorVersion = $1;
$minorVersion = $2; # ignore trivial version number = $3

if ($majorVersion > $MAJORVERSION)
{ &Caution($thisW,
"Warning: DogWag(V$MAJORVERSION.$MINORVERSION \
won’t support all features of V$majorVersion.$minorVersion");
} else
{ if (($majorVersion == $MAJORVERSION)

&&($minorVersion > $MINORVERSION)
)
{ &Caution($thisW, "Caution: minor version switch.\

Problems may abound!");
};

};

We give appropriate warnings if the major or minor version numbers of Dog-
wagger and the file being translated aren’t compatible. Trivial version numbers
(the third part of the dotted version number) are ignored.

5.4 Opening the target file

We open the target file, using the name provided, and fail if this fails.

my ($c, $ok, $wagline, $ec);
$c = $startComment; # shorter. hmm. clumsy.
$ec = $endComment; # version 2.1
if (! OpenTargetFile($thisW, $DOGFILE, $c, $FRED,

$nowarn, $sft, $ec))
{ return; #fail
};

5.5 Read source and process

Now we’re ready to read in the source file, and process it. There is a small ‘bug’ in
that a verbatim statement which has been commented out will still trigger action.
Hmm. A biig while statement surrounds everything, within which we read each
line in turn and process it. Several startup flags control interpretation, the most

5 THE PRINCIPAL FUNCTION 17

important beingishot , which determines whether we are actively writing lines,
or just throwing away LATEX text.

my($ishot, $hotdata, $chomper, $chomped);
my($nodogs);
my($SECTION);
$SECTION = 1;

$ishot = 0;
$chomper = 0; # default is OFF
$chomped = 0;
$SECTIONTITLE = ’’; # default is empty
$ok=1;
$nodogs=0; # default

while($ok)
{ $_ = <FRED>;

$LINECOUNT ++;

if (! defined)
{ $ok = 0;
} else
{ if (! $ishot) # if not writing

{ if (/\\begin\{verbatim\}(.*)/)
{ if (! $nodogs)

{ $ishot = 1; # turn on
$hotdata = $1;
$SECTION = &PrintSectionHeader($c, $SECTION, $ec);
print DOGFILE $hotdata; # clumsy but explicit

};
} else

see comment [1] below
{ my($depOn);

$myNam = ’’;
$depOn = ’’;
$nodogs = 0;
if (/ˆ\%.*DogWagger/)

{ if (/dogsAllowed=\‘no\’/)
{ $nodogs = 1;
} else
{ $wagline = $_;

if (/dependsOn=\‘(.+?)\’/)
{ $depOn = $1;

print FILELOG "\n Section dependencies <$depOn>";
};

if (/myName=\‘(.+?)\’/)
{ $myNam = $1;

print FILELOG "\n Section name: >$myNam";

5 THE PRINCIPAL FUNCTION 18

};
if (/noWarn=\‘(.+)\’/)

{ if ($1 eq ’yes’)
{ $nowarn = 1;
} else
{ $nowarn = 0; # default (safer)
};

};
if (/oneLine=\‘yes\’/)

{ $chomper = 1; # turn on!
print FILELOG " (chomp)";

};
if (/sectionTitle=\‘(.+?)\’/) # self-explanatory

{ $SECTIONTITLE = $1;
};

if (/newComment=\‘(.+?)\’/) # new comment string!
{ $startComment = $1; # note usage!
};

if (/endComment=\‘(.*?)\’/)
{ $endComment = $1;
};

if (/startFile=\‘(.*?)\’/) # new file start, can be null!
{ $startFileTxt = $1; # ver 2.1

$startFileTxt =˜ s/\\n/\n/mg; # CR’s !!
};

if (/endFile=\‘(.*?)\’/) # similar, end file
{ $endFileTxt = $1; # ver 2.1

$endFileTxt =˜ s/\\n/\n/mg; # CR’s !!
};

if (/newTarget=\‘(.+?)\’/)
{ $_ = $1;

if (/uudecode/) # if uudecoding ?!...
{ my ($ufile, $umode, $uout) = Uudecode($MAINW);

if (length $ufile > 0)
{

print FILELOG ("\n Uudecoding <$ufile> mode $umode");
open UFILE, ">$ufile" or &GlobalError("UU");
binmode UFILE; # NB otherwise DOS stuffup!
print UFILE $uout;
hmm what about the unix mode (opening?)
close UFILE;

}; # ??? also print to FILELOG?
} else # close current, open new!
{ $DOGFILE = $_; # retain new name

&CloseDogFile($thisW, $c, $eft, $ec); # close previous
$sft = $startFileTxt;
$eft = $endFileTxt;
$startFileTxt = ’’; #

5 THE PRINCIPAL FUNCTION 19

$endFileTxt = ’’; # reset for next.
$c = $startComment; # only now alter comment!
$ec = $endComment; # v2.1 likewise
$endComment = ’’; # reset!!
print FILELOG ("\n Comment format is <$c" . "COMMENT" . "$ec>");
if (! OpenTargetFile($thisW, $DOGFILE, $c, $FRED,

$nowarn, $sft, $ec))
{ return; #fail
};

};
};

--
here if more tests, use $wagline, not $_ !
--

};
};

if (length $depOn > 0) # if dependency
{ if (! &StoreChild ($myNam, $depOn)) # keep whole

{ &Caution($thisW, "WARNING: \
Input file <$FRED> terminated unexpectedly!");

close FRED;
close DOGFILE;
return; #fail!

};
$myNam = ’’; # cannot YET resolve (stored not printed)!

};
END AMENDMENT V2.0 9/9/2005.

};

Comment 1 In the above, if we’re not ‘hot’ (writing) we look for the ‘begin’
verbatim statement. If this verbatim statement is present, we turn on the heat.
Otherwise, we check to see whether we’re dealing with a DogWagger lineim-
mediately precedinga begin verbatim statement, in other words, we check for a
preamble line. See how, for a preamble line to be detected, the first character on
the line must be a percentage character.

The above code performs a variety of checks, including fordogsAllowed ,
dependsOn , myName, noWarn , newComment, newTarget , and the obscure
oneLine . See how within this section we have the ability to UUdecode a whole
section of many lines, writing the file and then just bashing on with the current
file!

If we are busy writing lines to output (are hot) we check for the end of a ver-
batim statement. If this is the case but an OPTION statement is still active we fail
but otherwise we go cold after resolving the name and writing code (FixName), if
appropriate.

} else # are hot!

5 THE PRINCIPAL FUNCTION 20

{ if (/(.*)\\end\{verbatim\}/) # end verbatim?
{ if ($OPTN) # OPTION still on?

{ &Alert ($MAINW,
"Optional text not closed. See log!");

&GlobalError(
"\n ERROR: NO option closure, line $LINECOUNT");

$OPTN = 0;
};

$hotdata = $1;
print DOGFILE $hotdata; #last chunk
if (length $myNam > 0) # if name defined

{ $SECTION = FixName($myNam, $c, $SECTION, $ec);
};

$ishot = 0; # turn off.
$chomper = 0; # back to default
$chomped = 0; # redundant.
$SECTIONTITLE = ’’;

} else
see Comment[2] below
{ if ($chomped)

{ / *(.*)/; # even allow null line ??
$_ = $1; # remove leading spaces!

};
if ($chomper) # v2.0 (23/8/2005): chomp line feed if indicated!

{ chomp;
$chomped = 1; # signal we’ve just chomped

};
if (/ˆ\s*\+OPTIONAL/)

{ $OPTN = 1;
$_ = "";

};
if (/ˆ\s*-OPTIONAL/)

{ $OPTN = 0;
$_ = "";

};
if ($MANDATORY || ! $OPTN)

{ print DOGFILE $_; # write to output
};

};
};

};
}; # end of biig while stmt.

close FRED;
&CloseDogFile($thisW, $c, $eft, $ec);
&Caution($thisW, "Done!");
return;

}

Comment 2In the case where we are hot but it’s not the end, we need to check

5 THE PRINCIPAL FUNCTION 21

some conditions. If the last line was chomped as part of a oneLine, we remove
leading spaces. If we are busy chomping terminal carriage returns, we chomp.
And we process OPTIONAL statements as appropriate.

We write the line to output (as appropriate), and then bash on. (If MANDA-
TORY is on, we print regardless; if it’s off then we only print non-optional lines).

6 READING THE HEADER 22

6 Reading the header

As discussed in the introductory section, we must accommodate the various header
line options. We obtain the version, fileTarget and startComment values in the fol-
lowing routine:

sub ReadHeader
{

my ($hotline);
($hotline) = @_;

my ($ver, $target, $comment, $nowarn, $mandatory,
$sft, $eft, $endComment);

$ver = 0;
$target = ’’;
$comment = ’#’;
$nowarn = 0;
$mandatory = 0;
$sft = ’’;
$eft = ’’;
$endComment = ’’;

$hotline =˜ /version=\‘(\d+\.\d+\.\d+)\’/; # version
$ver = $1;

$hotline =˜ /fileTarget=\‘(.+?)\’/; # file name
$target = $1;

$hotline =˜ /startComment=\‘(.+?)\’/; # comment
$comment = $1;

if ($hotline =˜ /include=\‘everything\’/)
{ $mandatory = 1;
};

if ($hotline =˜ /noWarn=\‘yes\’/)
{ $nowarn = 1;
};

if ($hotline =˜ /endComment=\‘(.*?)\’/)
{ $endComment = $1;
};

if ($hotline =˜ /startFile=\‘(.*?)\’/) # ver 2.1
{ $sft = $1;

$sft =˜ s/\\n/\n/mg; # CR’s !!
};

if ($hotline =˜ /endFile=\‘(.*?)\’/) # ver 2.1
{ $eft = $1;

$eft =˜ s/\\n/\n/mg; # CR’s !!

6 READING THE HEADER 23

};

return ($ver, $target, $comment, $nowarn, $mandatory,
$sft, $eft, $endComment);

}

Straightforward, really. In version 2.1 we add the option to specify the very
first few characters of the file using thestartFile option. This is useful for HTML
and PHP. See also the correspondingendFileoption for terminating the last chunk
of a file.

7 MISCELLANEOUS ROUTINES 24

7 Miscellaneous routines

The following are rather trivial routines:

7.1 Confirm an action

Given a window and a message, obtain confirmation.

sub Confirm
{ my ($thisW, $msg);

($thisW, $msg) = @_;

my $D = $thisW->Dialog(
-title => "Confirm your choice",
-text => "$msg",
-default_button => ’No’,
-buttons => [’No’,’Yes’],

);
$_ = $D->Show(); # use Show for Tk-b9.01
if ($_ eq ’Yes’)

{ return 1;
};

return (0);
}

7.2 Alert

Alert the user with a warning.

sub Alert
{ my ($thisW, $msg);

($thisW, $msg) = @_;

my $D = $thisW->Dialog(
-title => $msg,
-text => "$msg",
-default_button => ’OK’,
-buttons => [’OK’],

);
$D->title(’Note..’);
$D->Show;

}

A standard Tk Dialog.4

4For the pedant, part 7 has been removed!

7 MISCELLANEOUS ROUTINES 25

7.3 Caution — Alert with print

‘Caution’ is similar toDebug, but always generates an alert, regardless of the
debugging status.

sub Caution
{ my ($thisW, $msg);

($thisW, $msg) = @_;
print FILELOG "\n$msg";
&Alert($thisW, $msg);

}

7.4 Read the time
sub GetLocalTime
{ my ($sec, $min, $hour, $mday, $mon,

$year, $wday, $yday, $isdst);
($sec, $min, $hour, $mday, $mon,

$year, $wday, $yday, $isdst) = localtime(time);

$year += 1900; #fix y2k.
$mon ++; #january is zero!
return ("$year-$mon-$mday $hour:$min:$sec");

}

7.5 Farewell

We simply close the file log and exit.

sub ByeForNow
{ my ($thisW);

($thisW) = @_; # unused at present.

close FILELOG;
exit;
}

7.6 A clumsy error-related hack

The following clumsy hack should be fixed. See (foul) usage!

sub GlobalError
{ my ($msg);

($msg) = @_;
print FILELOG "$msg";
$ERR = $msg; #ugly global ?!

}

7 MISCELLANEOUS ROUTINES 26

7.7 Debugging

Debug simply logs a statement. If theBUGvariable is set, then an alert message
is displayed, but this is only used for detailed debugging.

sub Debug
{ my ($thisW, $msg);

($thisW, $msg) = @_;

print FILELOG "$msg";

if (! $BUG)
{ return;
};

&Alert($thisW, $msg);
}

7.8 More debugging

The following is only used for a clumsy debug where we displaying the value of
the filenamefred as an Alert, if you manually edit out the# from the relevant
Perl line.

sub CheckFred
{

my ($thisW);
($thisW) = @_;

&Alert($thisW, "Value is <$fred>");
}

7.9 Ask — datum input

Given a window, title and default text value,Ask gets user input. We might use
this to acquire a file name, but at present this is an unused routine.5

sub Ask
{ my ($win, $title, $default);

($win, $title, $default) = @_;

my ($db, $fred);
my ($e);
$fred = $default;

5Remove me!

7 MISCELLANEOUS ROUTINES 27

$db = $win->DialogBox(-title => $title,
-buttons => ["OK", "Cancel"]
);

$e = $db->add(’Entry’,
-textvariable => \$fred)->pack(-padx => 50,

-pady => 15,
-ipadx => 5);

my $choice = $db->Show;
if ($choice eq "Cancel")

{ return ("");
};

return ($fred);
}

7.10 Store array of lines

Here we keep ‘child’ (dependent) lines in an array element, to be resolved later
when all dependencies are met. The index of the topmost child is given by
$#CHILDREN. The list of dependencies contains elements separated by commas,
and there are starting and terminal commas (!) too.

sub StoreChild
{ my ($pendingName, $dependencies);

($pendingName, $dependencies) = @_;
my ($idx, $child);
$idx = 1+$#CHILDREN;
print FILELOG "\n Line $LINECOUNT: Storing child[$idx]";

$_ = <FRED>; # first line *must* be begin verbatim
if (/\\begin\{verbatim\}(.*)/)

{ $child = $1; # keep rest of line
} else
{ print FILELOG

"\n ERROR at line $LINECOUNT: \
no verbatim stmt on 1st child line!";

$ERRCOUNT ++; # bump error
print FILELOG "<$ERRCOUNT!>";
print FILELOG "<$_>";
return 1; # not fatal, per se.

};

$DEPENDENCIES[$idx] = ",$dependencies,";
$PENDINGNAME[$idx] = $pendingName;
$CHILDREN[$idx] = ’’; # default nothing

my($ishot, $hotdata);

7 MISCELLANEOUS ROUTINES 28

my($nodogs, $ok);
my($SECTION);
$SECTION = 1;

$ishot = 0;
$ok=1;
$nodogs=0; # default

while($ok)
{ $_ = <FRED>;

$LINECOUNT ++;

if (! defined)
{ return 0; # fail
} else
{ if (/(.*)\\end\{verbatim\}/)

{ $ok = 0;
} else
{ $child = "$child$_"; # concatenate, unchomped
};

};
};

$CHILDREN[$idx] = $child; # store away lines to be printed
return 1; # success!

}

As things stand, there is a bug in the above, as optional (debug) code cannot
be included in a child section!

7.11 Section labelling

FixName walks through all dependencies, resolves them (where relevant), and on
resolution, writes the relevant child code to output. (A ‘child’ is a section which
depends on other sections, and must not be written before these sections have been
identified and written).

sub FixName
{ my ($fname, $morenames, $c, $SECTION, $ec);

($fname, $c, $SECTION, $ec) = @_; # get name argument
$morenames = ",$fname,";

my ($idx);
while ($morenames =˜ /ˆ(.*,)(.+),$/) # split off last name

{ $fname = $2;
$morenames = $1;
$idx = $#CHILDREN;
while ($idx > -1)

7 MISCELLANEOUS ROUTINES 29

{ if ($DEPENDENCIES[$idx] =˜ /(.*,)$fname,(.*)/)
{ $_ = "$1$2"; # if name in list, clip out

print FILELOG " (dependency <$fname> resolved for child $idx)";
$DEPENDENCIES[$idx] = $_;
if (/ˆ,$/) # if all resolved

{ print FILELOG "\n Writing child[$idx] ";
$SECTION = &PrintSectionHeader($c, $SECTION, $ec);
print DOGFILE $CHILDREN[$idx];
$CHILDREN[$idx] = ’’; # (might even remove)
....WAIT! HERE MUST RESOLVE THIS ONE:
if (length $PENDINGNAME[$idx] > 0)

{ $morenames = "$morenames$PENDINGNAME[$idx],";
$PENDINGNAME[$idx] = ’’; # clear me!

};
};

};
$idx --; # move down to next

};
};

return $SECTION;
}

7 MISCELLANEOUS ROUTINES 30

7.12 Check for unresolved dependencies

At the end, we have to make sure that all dependencies have been resolved, or
signal an error. Errors are also written to the log.

sub CheckUnresolved
{ my($idx);

$idx = $#CHILDREN;
my ($errcnt);
$errcnt = 0;

while ($idx > -1)
{

if (length $CHILDREN[$idx] > 0)
{ print FILELOG "\n\n *** ERROR *** \n\n Unresolved code: \n ";

print FILELOG "Dependencies: <$DEPENDENCIES[$idx]> \n";
print FILELOG "Name: <$PENDINGNAME[$idx]> \n <Code: <---\n ";
print FILELOG $CHILDREN[$idx];
print FILELOG "$\n ---> Code ends> \n\n";
$errcnt++;

};
$idx --;

};
return $errcnt; # number of errors, 0=ok.

}

8 HANDLING OF MULTIPLE FILES 31

8 Handling of Multiple files

This section is is a consequence of the version 2 ability to generate multiple files
from a single .TEX source. We chose the simple option of closing the first file
and then opening and writing the next one, rather than having multiple dangling
file handles. The sole exception to this rule is that if we are writing a UUdecoded
binary file, we don’t fiddle with the current open file.

8.1 Open the target

We open a target file. If opening fails, the very clumsy GlobalError invocation
will be entered and the nasty global$ERRwill then be altered, allowing us to
detect the existence of a file. This ugly hack should be rewritten at some stage.

sub OpenTargetFile
{

my ($thisW, $DOGFILE, $c, $FRED, $nowarn, $sft, $ec);
($thisW, $DOGFILE, $c, $FRED, $nowarn, $sft, $ec) = @_;
my($ok);

$TODAY = &GetLocalTime();
$ERR = 0; # clumsy test for existence of file

open DOGFILE, $DOGFILE or &GlobalError("OK");
if (! $ERR) # if file exists...

{ close DOGFILE;
if ($nowarn)

{ $ok = 1;
} else
{ $ok = &Confirm ($thisW,

"Overwrite <$DOGFILE>? Are you sure?");
};

if (! $ok)
{ &Caution($thisW, "File $DOGFILE NOT overwritten!");

amendment v2.1.1 (2008-08-09): write to junk file:
$DOGFILE = ’JUNK.JUNK’;

};
};

$ERR = 0;
open DOGFILE, ">$DOGFILE" or

&GlobalError("Could not open target $DOGFILE :$!");
if ($ERR)

{ $ERRCOUNT ++; # bump error count
&Alert($thisW, $ERR);
return 0; #fail

};

8 HANDLING OF MULTIPLE FILES 32

print FILELOG "\n\n Opened target file: <$DOGFILE>";
print DOGFILE $sft; # very first text eg. for PHP.
print DOGFILE

"$c Generated by LaTeX DogWagger Version " .
"$MAJORVERSION.$MINORVERSION.$TINYVERSION from file <$FRED>$ec\n";

print DOGFILE "$c Date: $TODAY $ec\n";
print DOGFILE "$c Do NOT edit this file. Edit the LaTeX source!!$ec\n";

return 1; # success
}

On opening the target file, we write several lines to this file (DOGFILE) using
the comment character(s) to rem out the lines.6

8.2 Close file

Simply close the output file handle DOGFILE.

sub CloseDogFile
{ my ($thisW, $c, $eft, $ec);

($thisW, $c, $eft, $ec) = @_;

$ERRCOUNT += &CheckUnresolved();
if ($ERRCOUNT > 0)

{ print FILELOG "<$ERRCOUNT!>";
&Caution($thisW,

"WARNING: Error count $ERRCOUNT. See WAGLOG.LOG!");
print DOGFILE

"\n\n$c -- WARNING: $ERRCOUNT ERROR(S). See log!$ec\n";
$ERRCOUNT = 0; # clear me.

};

print DOGFILE "\n$c ---END OF FILE---$ec\n";
print DOGFILE $eft; # version 2.1
close DOGFILE; #
print FILELOG "\n <END OF FILE>";

}

6As things stand, we don’t allow suppression of this header except in binary files, but it’s
conceivable that at some stage we will need to modify DogWagger to permit this option.

9 TRIVIAL AMENDMENTS 33

9 Trivial amendments

9.1 Print a section header

We now have the ability to label sections with pre-defined text (commented out).
Remember that LINECOUNT is an ugly global. We submit the section count
SECTION, and return this value incremented by one. We also permit insertion of
this section count.

sub PrintSectionHeader
{ my($c, $SECTION, $ec);

($c, $SECTION, $ec) = @_;

if (length $SECTIONTITLE > 0)
{ $_ = $SECTIONTITLE;

if (/\$\[SECTION\]/) # if contains section count
{ s/\$\[SECTION\]/$SECTION/;
};
print DOGFILE "\nc_$ec\n";

} else
{ print DOGFILE "\n$c --- <Section $SECTION> --- $ec\n";
};

if (($SECTION % 10) == 1) # removed in ver 2.1
{ print FILELOG "\n";
};
print FILELOG "\n" . "line $LINECOUNT: written as section [$SECTION]";
$SECTION ++;
return $SECTION;

}

10 BINARY ENCODING AND DECODING 34

10 Binary encoding and decoding

Responding to the need to write binary code from our TEX source:

10.1 UUdecode

We read the global file handle FRED, mandating that the initial line is the ‘be-
gin verbatim’ line. The line immediately after this must contain the UUencoded
header line. The subsidiary routine UUdecodeLine returns not only decoded text,
but also an error code. If the error code is less than zero, an error has occurred;
if the error code is zero, then the subsequent linemustbe anend statement sig-
nalling the end of the UUencoded section!

sub Uudecode
{ my ($MAINW) = @_;

my ($filename, $mode, @rslt);
my ($line, $decoded, $err);
$filename = "";
$line = <FRED>; # this should be \begin{verbatim} line:
if ($line !˜ /\\begin\{verbatim\}/)

{ &Alert ($MAINW, "Uudecode: no verbatim <$line>");
return ("", "", "");

};

$line = <FRED>; # MUST be header!
chomp($line);
$line =˜ /begin\s+(\d{3})\s+(.+)/;
if (! defined $1)

{ # here write error!
&Alert ($MAINW, "Uudecode: bad first UU line <$line>");
return ("", "", "");

};
$mode = $1;
$filename=$2;
$err = 1; # -ve will signal failure

while ($line = <FRED>)
{ # hmm what if extra 0xD ?

last if (! defined $line); # ??
chomp($line);
last if ($line =˜ /ˆend/);
if (! $err) # bad if err zero

{ &Alert ($MAINW, "Uudecode: end stmt not seen!<$line>");
last;

};

10 BINARY ENCODING AND DECODING 35

($decoded, $err) = UudecodeLine($line);
nb if $err is zero, next line must be /ˆend/!
if ($err < 0)

{ # here could write error!
if ($err == -1)

{ $err = "Bad line";
}

elsif ($err == -2)
{ $err = "silly length($decoded)";
}

elsif ($err == -3)
{ $err = "lengths don’t match($decoded)";
};

&Alert ($MAINW, "Uudecode: error $err in <$line>");
last; # terminate

};
push @rslt, $decoded;

};
return ($filename, $mode, join("",@rslt));

}

10.2 UUdecoding

Here’s the routine that actually does the business of UUdecoding. We’ve kept this
very simple, based on publicly available code.7 On most UNIX/Linux systems,
UUencoding and decoding should be readily available, but for DOS uuencoding,
try e.g.this program.

sub UudecodeLine
{

my ($line) = @_;
my ($charlen);
my ($decoded, $ld);

$line =˜ /(.).*\‘*$/; # remove terminal backticks too!
if (! defined $1)

{ return ("", -1); # dud line!
};

$charlen = (ord($1) - 32) & 077;
if ($charlen == 0)

{ # ie terminal line with single backtick:
no error, but END!
return ("", 0);

};

7Source: http://search.cpan.org/src/ANDK/Convert-UU-0.52/lib/Convert/UU.pm

% uuencode (DOS): http://drn.digitalriver.com/product.php%5Bid%5D39753%5Bcid%5D2%5BSiteID%5Ddriverguide

10 BINARY ENCODING AND DECODING 36

if (($charlen > 45) || ($charlen <0))
{ return ("$charlen($1)", -2); # bad length
};

convert to number, then count of characters encoded;
$decoded = unpack("u", $line); #uudecode!

MUST CHECK ON HOW ROBUST unpack IS???
$ld = length $decoded;
if ($ld != $charlen)

{ return ("$ld:$charlen:$decoded", -3); # length doesn’t match!
};

return ($decoded, 1); # success!
}
=thelastpage

See the archaic use of octal. But it works.

A brief note on uuencoding/decoding

This description assumes you understand hexadecimal and ASCII
A uuencoded file consists of:

1. A header line;

2. A body;

3. A trailer line.

All other lines must be ignored Lines may end with 0x0D, 0x0A, or any com-
bination of the two (ie carriage return and/or line feed). From now on we’ll call
the end of line character(s) the ’endline’. Conventionally this should beencoded
as simply 0x0A. Here are the details:

1. The header line. This contains three itemsseparatedby spaces (0x20):

(a) The five character string ’begin’ (no quotes around it)

(b) Three digits, each in the range 0..7 i.e. an octal number

(c) The file name in ASCII (potential for trouble here!)

The header line terminates with an endline.

2. The body. This contains one or more lines, each ending with an endline.
For all but the last data line, there should be 62 characters in a line:

(a) A single character, usually the ASCII character M

(b) 60 characters representing an encoded string

10 BINARY ENCODING AND DECODING 37

(c) The endline

For the last line, some variation is permitted: The first character can be in
the range 0x20 to 0x5F. There’s a FURTHER CHECK: the very last line of
the body does NOT contain data and is simply made up of a single backtick
character.

In all cases:

(a) The first character represents the number of encoded characters, with
0x20 added! This is why all lines but the last should start with M: they
contain 45 encoded characters (hex 0x3D). The ASCII representation
of M is 5D, ie 0x3D + 0x20.

(b) Encoding of characters is done three-at-a-time. If there are less than
three characters, we pad with hex zero (0x0). Encoding is as follows:

i. Divide the 3 bytes (3*8 = 24 bits) into four groups of 6 bits, work-
ing from left to right;

ii. This gives us four numbers between 0x0 and 0x3F;

iii. To each number, add 0x20, giving numbers in the range of 0x20–
0x5F;

iv. Write the numbers as four ASCII characters to the output file.

In other words, we output characters in the set of:
!"#$%&’()*,-./:;<=>?@[\]ˆ_ as well as plus, space, 0–9 and
A–Z.

3. The trailer line. This starts with the three character string ‘end’ (No quotes).

There are some frills:

• Also permissible are ASCII characters> 95 (5Fh) but only the rightmost 6
bits are relevant.

• The three digit number on the first line is the file mode (read/write/execute)
The first number is the octal representation of the read permission of the
file, the next the write permission, and finally the execute permission.

• Because some mailers used to strip off terminal blanks, it is usual (and per-
haps wise) to pad such lines (with at least one terminal blank) with supple-
mentary junk characters. The usual character is the backtick, 0x60, which
has the added advantage that it translates to the otherwise illegal value 0x0
when the high bits are masked off.

11 CHANGE LOG 38

11 Change log

11.1 Changes in version 2.0

The major changes in version 2.0 were related to the ability to shift sections down
below other sections (defer writing of certain sections), waiting for all dependen-
cies to be fulfilled before writing the code. Names are only resolved when all of
the dependencies of that section have been met.

It would be possible to keep a record of ’names already resolved’ but this is a
little silly. We are only interested in deferring the writing of code, so there’s little
point in bookkeeping to this extent. Just leave out the dependency if it’s already
resolved!

If a child has no name, then the corresponding PENDINGNAME element
is ’’ . We could decrease memory requirements for CHILDREN by deleting array
elements once written; we might benefit from even removing all corresponding
elements entirely (as we will resolve the name immediately and the element in
DEPENDENCIES is of course empty as well).

We also introduced the concepts of line concatenation, chomping off line feeds
and subsequent leading spaces.8

Another amendment was allowing alteration of the initial comment string
(newComment), the noWarn option to suppress irritating warnings (especially
with multiple file writes), and OPTIONAL statements for a debugging version.
(Note the bug with this describedabove).

We also introduced insertion of binary (uuencoded) files, by allowing the user
to saynewTarget=‘uudecode’ . Usage of the Uudecode function is:

($filename, $mode, $outstring) = Uudecode($MAINW);

Several comments on the uudecoding option are (a) Should we check for and
warn about executables? (b) At present permissions are disabled, so this isn’t
really an issue. (c) At some stage we should check on how robust the Perl unpack
“u” option is!, and (d) the uuencoded linecannotstart on the verbatim line but
MUSTstart on the next line — there can be NO unused lines at the start.

11.2 Changes in version 2.1

1. We allow file start and end code. This is really for PHP, where such code is
vital, but also for included HTML. The option startFile=‘<?php’ (or what-

8When using the WinEdt text editor, the default is to trim trailing spaces, which can be rather
irritating. You have to uncheck Options—Preferences—defaults—Trim spaces, or in already cre-
ated documents uncheck Document—document settings—trim spaces.

11 CHANGE LOG 39

ever) must be in the same line as the file name specification, but we can
specify the endFile=’?>’ directive any time before we terminate the file for
which we require such terminal code. The length of either can be specified
as zero using startFile=‘’ or endFile=‘’.Note that after each file is written,
these text strings are reset to the null string, so the startFile and endFile
values must be specified foreach filein which they are used!

2. We remove any occurrence of=cut at the start of a verbatim comment, as
we had problems with some Perl versions, notably v8.

3. We set the focus to the ‘Wag’ button, so on running the program with a file
argument, things are ready to run.

4. We allow comment closure (as in HTML, older versions of C), along the
lines ofendComment=‘–>’ for HTML. The default closing comment is an
empty string. Note that unlike startFile and endFile, startComment/newComment
persist until changed.However, endComment reverts to the empty string af-
ter the file using the current string has been closed!!

5. We fixed a problem with multiple dependencies, where a section was printed
after just one dependency was resolved owing to an error in testing the re-
maining list of dependencies!

6. In minor version 2.1.1, if the user declines to overwrite a given file, we
don’t abort the whole Dogwagger process — instead, we write the data to
the file ‘JUNK.JUNK’ and carry on! Note that we overwrite this file, and
don’t append, so if you decline to overwrite multiple files, only the last will
be kept.

11 CHANGE LOG 40

Appendix A: GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to guar-
antee your freedom to share and change free software–to make sure the software is
free for all its users. This General Public License applies to most of the Free Soft-
ware Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that ev-
eryone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually

11 CHANGE LOG 41

obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a no-
tice placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The ”Program”, below, refers to any
such program or work, and a ”work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifi-
cations and/or translated into another language. (Hereinafter, translation is
included without limitation in the term ”modification”.) Each licensee is
addressed as ”you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what
the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and ap-
propriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program
a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

11 CHANGE LOG 42

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use
in the most ordinary way, to print or display an announcement includ-
ing an appropriate copyright notice and a notice that there is no war-
ranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program it-
self is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announce-
ment.) These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the en-
tire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

4. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically

11 CHANGE LOG 43

performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.) The source code for a work means the preferred
form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files, plus the
scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or bi-
nary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that com-
ponent itself accompanies the executable. If distribution of executable
or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object
code.

5. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have re-
ceived copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the Pro-
gram (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distribut-
ing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to

11 CHANGE LOG 44

copy, distribute or modify the Program subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ ex-
ercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For example, if
a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free soft-
ware distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of soft-
ware distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geograph-
ical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be

11 CHANGE LOG 45

similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-
ifies a version number of this License which applies to it and ”any later
version”, you have the option of following the terms and conditions either
of that version or of any later version published by the Free Software Foun-
dation. If the Program does not specify a version number of this License,
you may choose any version ever published by the Free Software Founda-
tion.

11. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foun-
dation, write to the Free Software Foundation; we sometimes make excep-
tions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO

11 CHANGE LOG 46

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

(END OF TERMS AND CONDITIONS)

11 CHANGE LOG 47

Appendix B: A UUencoding program

Aww heck. Here’s a UUencoding program we found on the ’Net at
digitalriver.com:

begin 644 uuencode.com
MZV,-"DEN<’5T(’!A=&@O9FEL93H@($EN<’5T(&9I;&4@97)R;W(N3W5T<’5T
M(&9I;&4@97)R;W(N8‘T*96YD#0I.;R!A8W1I;VX@97AI<W1S(2‘@06)O<G1I
M;F<A‘‘‘!‘#@$‘‘"T,,TA/‘)S#+JY!.E’‘>C$‘>D]‘>CB‘7,QNOP#N;H‘Z+,!
MN@(!N10‘NP(‘M$#-(;]_‘,8%4(O7M‘K-(>B[‘7,*M‘&Z00&Y"0#KQ+KH‘XOR
MN‘‘]S2%S‘ˆEP‘:-=‘8O/*\Y/L%S]\J[\=‘B+_H!]‘3IU‘D=’B_>+UKˆT‘ZP*
MP’0#JNOXN‘T*JU>+\K\X!(O7K‘K‘=0*P+JH\+G7TN’5UJ[AE‘(D%,\F‘/F0!
M_W0EM$[-(3P"=!T\$G0968O/*\J[‘@‘#R[1‘S2&Z2@&Y$P"P!>D]_[0\S2%9
M<P/IO‘"C7P&ZJ@,KRNBA‘.BV‘’1(L0:LBN#0Z-#HJJR*T-’HT>C1Z-’HJHKB
MK(K0TˆBJBL*J@\4#.S9A‘7(’@#YC‘0!U%X/]+74%Z#D‘L08[-F$!<L&‘/F,!
M‘76S"ˆUT"2LV80$K[N@=‘+HY‘;D(‘.@ˆ‘(L>7P&T/LTAM$S-(5"T"<TA6.OT
MNJH#B\\KRE&+ˆHO%B‘6T(+M@/XH%(L<"Q#K$=0**PZKB\5FX#0J)!4%!BQY?
M‘;1‘S2%R!HOZ1S/MP[HG‘;D2‘.LPNC@$N<BOBQY=‘;0_S2%R&HORB]H#V#O!
M=‘G’!P‘‘Q@9C‘0&)’F$!"\##NA8!N1$‘Z‘,‘Z7S_4%)1NN($N0(‘Z!‘‘65KH
M"P"ZX@2Y‘@#H‘@!8P[L"‘+1‘S2’#OH‘‘Oˆ@#_*P*P’0OM""L.L1VˆSPO=‘0\
M+74<B]"+!#P_=!\D7SU/((O"=0OV%F0!1D:L.L1V!JJLZ_CYP\8%‘/C#6+K\
M‘[‘!Z1’_D&)E9VEN(#8T-"!5545.0T]$12!V,BXP‘$1A=FED(%‘@2VER<V-H
M8F%U;2P@5&]A9"!(86QL+"!’:79E;B!T;R!T:&4@<’5B;&EC(&1O;6%I;@!5
M545.0T]$12!;+6]=(%MD.EU;7’!A=&A<76)I;F%R>2YF:6P@/%)%5%523CX-
M"G!R;V1U8V5S(&)I;F%R>2Y5544@;VX@8W5R<F5N="!D<FEV95QP871H#0HH
M<’)O=FED:6YG(&)I;F%R>2Y5544@9&]E<VXG="!A;’)E861Y(&5X:7-T*2X-
M"BUO(’-W:71C:"!F;W)C97,@;W9E<G=R:71E(&]F(&5X:7-T:6YG(&)I;F%R
M>2Y5544-"B14:&ES(’!R;V=R86T@<F5Q=6ER97,@1$]3(%8R+C‘@;W(@:&EG
’:&5R+@T*)‘‘‘
‘
end

Dogwagger will pull it out of the .TEX source, of course!

