Analgesia safety checklist:

PDA implementation details

Part Il.
Version 0.95

J.M. van Schalkwyk
February 27, 2009

Contents

1 Introduction

2 Menurules

2.1
2.2
2.3

Rules forplacement.
Menucomponents. Lo
Anote onfontsandgraphics.,

3 SQL specification of menus

3.1

3.2
3.3
3.4

TheITEMtable.
311 Itemlists. e
Menucreation e e e e e e
Tablecreation e
Specifying associated routines.

4 Scripting — a brief introduction

4.2
4.3

41.3 Insertingavalue.
414 QUERY limitations.
QMANY —retrieve multiplevalues

431 DOSQL—UPDATE&INSERT
43.2 COMMITandROLLBACK

CONTENTS 2

433 KEY . . . e 21
434 MEandSETME. 22

4.4 Menu-relatedcommands. 22
441 Localvariables. 23
442 Menuutilities. o 23
443 Fancymenucommands 24

4.5 Localvariables,XandV. 24
4.6 Flowof controlandthestack. 25
46.1 SKIP e 26
4.6.2 &routineand zoutine 27
46.3 RETURN. 28
46.4 REPEAT/STOR 28
46.5 Guiltysecrets o e 29

4.7 Managingthestack o o L. 29
4.8 Alteringtext. e 30
4.9 Arithmetic and Logical commands. 31
4.10 Date- and time-related commands. 32
4.11 Caching and other functionality. 33
4.11.1 Otherfunctions 34

5 Menus for the Analgesia Database 34
5.1 Wardselection(900). 35
5.1.1 Obtainingawardlist 37
5.1.2 Anexperimentalroutine 38
5.1.3 Listingrooms withinaward 38

5.2 Patient selection withinaward (920). 39
5.2.1 Selectionroutines. 44

5.3 Patientadmission (905). oL 48
5.4 Findingapatient(919). 61
5.4.1 Finding patients who haven'tbeenseen 63
5.4.2 Finding patients with recent ‘problems’. 63
5.4.3 Findthose marked for ‘PMreview. 64

5.5 Selection from a list of surnames (918) 64
5.6 Patientalertscreen(903). 67
56.1 LastEpoch. 74
5.6.2 Patientward: getandset. 74
5.6.3 Obtaining patientdata 75
5.6.4 Finding the mostrecentprocess. 76
5.6.5 Checking active processes. 77

5.,6.6 Endingaprocess. 78

CONTENTS 3

5.6.7 Creatinganewprocess. v v v v v v v v .. 78
5.6.8 DatedProcedure 78
56.9 Onoroff?. 79
5.7 GeneralComments (906). 79
58 Paindata(907). 84
581 Anewcheck. 85
5.8.2 Initialisation Lo 86
583 PainScores 90
5.8.4 Checking analgesic modalities: regional 92
5.8.5 CheckingforIVPCA 97
5.8.6 Checkingfororals. 97
5.8.7 Checking for other analgesic modalities 98
5.9 Addingoperationdata(908) 101
5.10 Theregionalmenu(904) 108
5.10.1 Fillinginmenudetails. 111
5.10.2 Details of the epidural infusion process. 115
5.10.3 Entering Details of the Regional Process. 127
511 IVPCAmMenu (914) o i 130
5.11.1 Notingthe PCAsettings 139
5.12 Startmenufor PCA(913). o 140
5.13 Oraltherapymenu (915) 142
5.13.1 Alistoforaldrugs. 144
5.13.2 ListDrugs. e 147
5.14 NauseaRx (3915%). i 149
5.14.1 Alistofantinauseants 150
5.15 Other drugs and modalities (2915). 152
5.15.1 Rectal (PR)therapy. 154
5.15.2 Yetmoretherapy 155
5.16 ‘Finally’: Newalerts &c (909). 156
5.17 Dischargemenu (921). 163
518 Helpmenus. e 167
5.18.1 Painhelpmenu. 167
5.18.2 PCAhelpmenu. 170
5.18.3 Regionalhelpmenu. 172
5.19 Patients withoutwards 174
5.20 Reasons for stopping (880). 176
5.20.1 Thesecond'stop'menu 181
5.21 Loggingin(899) 182
5.22 An Introductory Screen (970). 185

5.23 Error documentation: 980. 191

CONTENTS 4
5.23.1 The PROCERROR mMenu:960. 192

5232 TheERRmMmenu 194

5.23.3 Errorbuttons. o o 197

524 Frills. e 198
5.24.1 Alterthedate(991). 198

6 Flagging certain patients 201
6.1 Patientsnotyetseen 201
6.2 Patientswith‘aproblem’ 202
6.3 Patients marked for ‘PMreview! 203
6.4 Addendum — an epidural pop-up (930)L 204

7 Process and epoch creation 211
7.1 Newepochs e 212
7.2 Endofanepoch., 213
7.3 Conventions forepochvariables. 213

8 Menu hierarchies and caching 214
8.1 Anoteon'staticdata. 214
8.2 Menuhierarchy. o 214
8.3 Loggingin. e 216
8.4 Wardselection., 217
8.5 Patientselection. 0. 217
8.6 Patientadmission o e 219
8.7 Findapatient. 221
8.8 Selectionfromalistofsurnames. 221
8.9 Patientalertscreen 0. 222
8.10 Comments e e e e e 224
8.11 Epiduralpop-up e 225
8.12 Paindata e 226
8.13 Painhelp 228
8.14 Addanoperation. 228
8.15 Regionals. e 229
8.16 Regionalhelpmenu. 231
8.17 IVPCA e 232
8.18 PCAhelpmenu 234
8.19 Oraltherapy. e 235
8.20 Nausea RX e e e 236
8.21 Othermodalities.« . . e 237
8.22 NewAlerts e 238
8.23 Discharge. e 239

CONTENTS

9 PDA scripting conveniences

10 Addendum: specific stuff
10.1 Ward specifics . . .
10.2 Drug-specific data .

10.2.1 Anoteondrugcodes.
10.2.2 Epiduralinfusions.
10.2.3 Intravenous PCA oL
10.2.4 Other IV, non-PCA,andSC

10.25 Orals

10.2.6 Rectal (PR)drugs.
10.2.7 Transdermaldrugs
10.2.8 Specialinfusions oL
10.3 Test data for patient selection

10.4 A list of all functions

11 Change Log
11.1 Version0.95

1 INTRODUCTION 6

1 Introduction

We continue our discussion of the database underlying our PDA-based analgesia
application. In part one, we described fundamental tables which allowed us to
model medical observations and intervention. In this, the second part, we dis-
cuss SQL tables which allow us to specify user menus on both the PDA and the
desktop, and then implement these menus for our analgesia database.

Our objectives here are to:

1. Describe thenenu systermsed to dynamically create graphical user menus
on both the PDA and the desktop machine;

2. Explore our uniquescripting languagea simple linear language used to tie
together SQL statements and other commands;

3. Describe in detail the implementation of a database used to capture pain
information. We describe both placement of items within user menus and
the underlying scripts used to enter information.

We assume that you understand core SQL, that you know what a pixel is, and
also that you have an idea how common computer interface components work, at
least from a user point of view! We’re talking about things like text fields, popup
lists, buttons and checkboxes. Some programming skill is also assumed — for
example, you should know what a stack is, and how it is pushed and popped.

Rather than having an extensive, formal discussion (or tutorial) describing
how to use the scripting language, we ‘show by example’. There are practical
advantages to such learning on the job, although these are partially offset by the
somewhat steeper learning curve.

This documentation and all associated code is released under the GNU Public
Licence (GPL). Please note the conditions of this licence, a copy of which can be
obtained at:http://www.gnu.org/copyleft/gpl.htmIThis document is Copyright
©J van Schalkwyk, 2005-2007.

1We will eventually write that scripting tutorial, somewhere down the line!

http://www.gnu.org/copyleft/gpl.html

2 MENU RULES 7

2 Menurules

Using just a handful of tables, we describe (codify) user menus, their components,
and the placement of these components within the menu seen by the user. First
let’s look a the conventions we will use.

2.1 Rules for placement

Pixel-based graphics have a problem. If we specify the position of something on
a screen, and perhaps its dimensions as well, using pixel co-ordinates, then what
happens when some bright spark comes up with a screen which has more pixels
on it? There is usually a cock-up — either the ‘'something’ on the screen becomes
shrunken, cramped and difficult to view (this is usually the case), or the pixel co-
ordinates have to be scaled to the new pixel dimensions of the screen (which is
often rather difficult to achieve, especially if the pixel values are hard-caded).

Our program is confronted by the problem that it has to run, preferably without
modification, on both a PDA (with a common screen resolution of eithey
160 or 320 x 320), and a desktop machine (wheré) x 160 looks absolutely
minute). We will thus specify that all co-ordinates and dimensions we use will be
specified as floating point numbers between zero and one. Such numbers represent
a portion of the width or height of the screen; we will refrain from using pixel
coordinates. We will always refer our positions to the top left corner of the screen,
which can be considered to occupy the positiey0). The bottom right corner of
the screen is thefl.0,1.0).*

We will store such floating point numbers within database tables, and then re-
trieve these values so we cdpnamicallycreate menus according to the numeric
recipes we've encoded! We will do so both on desktop machines and Palm PDAs.
This approach is quite different from the ‘normal’ way a PalmOS PDA menu is
created. PalmOS menus are normaligtic— they are fixed in creation, and kept

2This problem is common with educational games for kids, for example. The ‘solution’ is often
that either the game won't run on your fancy new machine with its higher screen resolution, or the
program bullies the display into an older, low-resolution mode, often with dire consequences!

3Note however that there are some arbitrary, interesting constraints on the Palm PDA which
we'll also have to take into account.

4“Even better’ might be to use a ratio of two numbers, as the idiosyncracies of floating point
representation using finite precision numbers wouldn’t then rear its ugly head. We have not fol-
lowed this rather attractive path because we would then either need to create a cumbersome frac-
tion datum type, or start playing around with pairs of integers in some other way. In addition it's
rather counter-intuitive to have to find a fraction for a particular ratio, determine that this isn't
quite correct, and then find another similar but slightly larger or smaller fraction. All these issues
increase the likelihood of programming error. Double precision floating point numbers mitigate
the problem to a degree, as does our tolerance of ‘small’ graphical irregularities.

2 MENU RULES 8

in this fixed format on the PDA. We use dynamic menu creation almost exclu-
sively, something which is difficult to achieve owing to the complexity and, dare
we say it, suboptimal design of the Palm operating system. We have limited our
program to PalmOS version 4.0 and above, because the dynamic components in
operating systems prior to 4.0 are pretty thoroughly broken.

2.2 Menu components

We will use a variety of different components to create our menus. We have
set things up so that menus (made of several components) can be included as
components within other menus — repeated arrangements of components don't
have to be laboriously re-coded each time they are btis@d.course, there are
practical limits to the complexity of such arrangements, and common sense should
dictate even more stringent constraints on what we attempt!

We have (initially at least) been rather churlish in our allocation of menu com-
ponent types. Our short list of vital components is contained in Tabl&his
choice of components may seem rather arbitrary, particularly the lack of ‘radio
buttons’, but thepushbutton can take on the same role, using less space, and is
more pleasing on the eye (our eye, at least)! In this initial implementation, we
have avoided use of sliders of various types, but arguments (poor ones) can be
made for their later introduction.

A further pretty important component we haven't included (at present) is the
bitmap. We have no bias against images, we simply haven't had time to write all
of the associated code. Use of images is a priority for future development.

A popmenu does not permit the selection of multiple items. This approach
keeps things simple, and constrains us to represent such multiple items as a group
of pushbuttons. We are prevented from inappropriate hiding of information from
the user.

SThere are potentially effective work-arounds for earlier versions, but we won't go there, at
least, not for now!
6Although we don’t use this particular ‘feature’ very often!

2 MENU RULES 9

Our term Perl/tk PalmOS Description

label Label Label Text label, cannot be
edited

button Button buttonCitl clickable button

checkbox Checkbutton | checkBoxCitl clickable checkbox with

two states, ticked or not
pushbutton [user defined] pushButtonCtl | clickable button with two
states, highlighted(on) @
not. Can be grouped

-

text field Entry Field Field in which text can be
entered/edited
popmenu Optionmenu | popupTriggerCtl| Menu of items from which

one can be selected
table:
monomorphic | [user defined] [user defined] | Grouping of multiple sim-
ilar items (e.g. buttons)

polymorphic | [user defined] [user defined] | Grouping of dissimilar
items in distinct columns

Table 1: Interface component types

2.3 A note on fonts and graphics

One of the most limiting characteristics of the Palm PDA was its few fonts. At
present our programming is singularly bereft of font-tweaking capabilities. Ideally
we should build in the ability to scale fonts to fit, just as we currently scale menu
components to fit. A lot of work is needed here!

We have also completely omitted bitmap graphics from the current design.
Adding such capabilities won't be particularly difficult, but we have concentrated
our energies elsewhere.

3 SQL SPECIFICATION OF MENUS 10

3 SQL specification of menus

In this section we will describe all menu-related tables. We will start with the
ITEM table which is used to represent individuigms

3.1 The ITEM table

CREATE TABLE ITEM (
cold integer,
iID integer,
constraint badltemID primary key (ilD),
iType integer,
iText varchar(64),
iName varchar(64),
iList varchar(1023),
iLines decimal (2,0) default 1,
iResponse varchar(1023),
ilnitial varchar(1023),
iScript varchar(1023)

);

As in Part | of the database, we have a cold field in each table which is exported
to the PDA.

Eachitemis rather chunky, mainly due to the optional presence of lengthy as-
sociated scripts. Thiénitial andiResponseacripts are respectively invoked when
the item is initialised, and when it is activated by a stylus tap or mouse click. Not
all items need to have initialisation or response scripts, but it's clearly a boon to
be able to, for example, attach a SQL query to initialisation of an item, using the
result of the query to alter the appearance or contents of the item! iScript is a
little-used component at present, but has the potential to be used in communica-
tion between itemg!

Other item components are worthy of comment. The unique identifying key
(IID), and text value (iText) should be self-explanatory, but what of the rest? Each
item has a name (iName) of limited utility at present, other than perhaps saying
what the item does; in addition multi-line items state the number of lines (iLines).

’Note that in some databases, for example mySQiareharfield is limited to 255 characters,
so the specification of this table would have to be different.

3 SQL SPECIFICATION OF MENUS 11

3.1.1 ltem lists

An important property of items igist. This is used wittpopmenus, to provide
a list of options, one of which can be selected. There are two ways of populating
such a list. One is to hard-code the list along the lines of:

INSERT INTO ITEM (ilD, iType, iText, iList)
VALUES (123, 6, R, "1(1[2[21313]);

Each item in the list is separated from the next by a ‘pipd’symbol. There
is also a terminal pipe, at the end of the liSee how due to peculiarities of our
coding, each item appears to be duplicated — one value is a code, and the other
is the displayed representation of that code. In our example, the two are identical.
More sneaky is the following:

INSERT INTO ITEM (ilD, iType, iText, iList)
VALUES (27, 6, 'wd’, ’->&ListWards’);

What did we do in the above? The second option allows uisvioke a script
at the time of creation of the list. The syntax is quite precise — if and only if the
list value begins with>, then is the following script invoked, and the results of
the script are used to create the list! See how we simply invoke a function, here
called ListWards — an ampersand® prior to the function name tells us this is
what it is, just as in Perl.

In addition, we might constrain iType to depend on another table — ITEM-
TYPE — as a foreign key. We won't actually implement this frilly little ITEM-
TYPE table, as the numeric codes for the various item types are known to our Perl
and C++ programs, and don't really need to be explicitly stated. For the record,
the table can be specified thus:

CREATE TABLE ITEMTYPE (
cold integer,
itID integer,
constraint badltemtypelD primary key (itID),
itName varchar(32)

);

The key values with their corresponding meanings are as follows:

3 SQL SPECIFICATION OF MENUS 12

0O
o
o
)

Meaning

label

button

checkbox
pushbutton
textfield

popmenu
scrollbar
polymorphic table
monomorphic table
bitmap

menu

NEFE,OO~NOOT,WNER

o a1

Table 2: Menu component types

Although we will often refer to the above list during discussion, we in fact
have no use for it (and ITEMTYPE) in actual SQL implementation, and will con-
veniently leave it out of our final databa%e!

Finally, take note that because a menu is a type of item, when we come to
create menus, we can insert other menus into them as items! Such menu creation
IS our next topic.

3.2 Menu creation

A menu is an aggregate of items. Menus are a powerful weapon, allowing us
to wield several items at the same time. Let's see how this works. Here’s the
MENUITEMS table:

CREATE TABLE MENUITEMS (
cold integer,
miUid integer,
miMenu integer,
constraint badMimenu foreign key (miMenu)
references ITEM,
miltem integer,
constraint badMlitem foreign key (miltem)
references ITEM,
miOrder integer,
constraint badMlkey primary key (miuid),

8See how we've built bitmaps and scrollbars in, although they aren't yet implemented!

3 SQL SPECIFICATION OF MENUS 13

miX float,

miY float,

miwW float,

miH float,

miPaper varchar(20),

milnk varchar(20),

miGroup decimal (2,0) default O,
miEnabled decimal (1,0) default 1,
milnitial varchar(2048

);

We already know from the preceding section that menus too are a type of item.
Now, in the above table, we associate other items with menus. miMenu tells us
which menu, and miltem is the associated item. Clearly many items (including
other menus) can be included as sub-components of a menu.

You can see there is one potential problem. What is the meaning of a menu
which refers tatself as a sub-component? There is clearly potential for infinite
recursion here! We use this potential flaw to our advantage, however. We make
the rule that if a menu refers to itself, then it i@ levelmenu. By this, we
mean that only menus which are self-referential can be displayed as individual
menus on the screen. We use this self-referential property to identify such menus!
It goes without saying that self-referential menus, when displayed, don't include
themselves as components.

Menu descriptions obviously contain other fields. These fields include floating
point representations of the size and position of the menu component (as specified
in section2.1).° The names of these components are pretty well self-explanatory
— miX, miY, miW and miH. Menu components can be grouped (miGroup), they
can be initially enabled or disabled depending on the value in miEnabled, and
placement order in the menu can be specified with miOrder (smaller values in
this field force earlier placement, later items potentially overlapping earlier ones).
Foreground and background colour of components can be specified using miPaper
and milnk, but note that at present this functionality is not enabled on the PDA.

The milnitial field is interesting. It is usually null, but | put it in as | thought
that occasionally the ilnitial script which is run when an item is made might need
to be superseded in the context of a menu. On reflection, this is probably a bad
idea, and the field should be removed.

9Note that due to the peculiarities of PalmOS, and particularly of the debugging environment,
we've taken the line of least resistance and all of m@nusccupy the whole PDA screen!

3 SQL SPECIFICATION OF MENUS 14

3.3 Table creation

We rather glossed over creation of on-screen tables. Both Perl/tk and PalmOS
have the complex capability to create and display tables of similar or dissimilar
items. We however define our own table-creation, which functions similarly on
PDA and desktop. Central to this is an SQL table called ICOLTABLE. This table
associates an item (irTBL) previously defined as a (screen) table, with another
component (irltem) which is then relentlessly duplicated to constitute a column of
that (screen) table. Here’s the SQL.:

CREATE TABLE ICOLTABLE (
cold integer,
irkey integer,
constraint badlRowRow primary key (irKey),
irTBL integer,
constraint badirTBLref foreign key (irTBL)
references ITEM,
irltem integer,
constraint badIrITEMref foreign key (irltem)
references ITEM,
irOrder decimal (2,0),
irName varchar(64),
irFraction float,
irPaper varchar(20),
irEnabled integer default 1

);

See how each column (for this is in fact what we're creating) has in addition
an order (irOrder) specifying where it appears as columns are created from left to
right;*° a name (irName) which is used as the title of the column; the capacity for
column components to be disabled (irEnabled); and a fractional width (irFraction)
which specifies what portion of the width of the table is occupied by the column.
The last mentioned is necessary, because remember that a table is also an item,
and as such has a screen-relative width.

A minor component is irPaper, which should allow us to alter the background
colour of a particular column. We haven'timplemented this ability on the PDA at
present.

19ower values are created first

3 SQL SPECIFICATION OF MENUS 15

3.4 Specifying associated routines

A powerful ability of our system is that we can invoke scripts at various points.
When a menu is created, and when a user selects a component with stylus/mouse,
a script can be invoked. We have already seen in the preceding sections where
such scripts are stored. There is a clear requirement for repeatedly used scripts to
be ‘encapsulated’ elsewhere, and this is whetginescome in. They are simply
repetitively used scripts, kept under a single name, and invoked when needed. We
even know how to invoke them within a script, as we encountered an example up
above (Sectio3.1.1)! We still need a table to store such routines, and here it is:

CREATE TABLE FUN (
fKey integer,
constraint badRoutineKey primary key (fKey),
fBody varchar (2047),
fName varchar (32),
cold integer

);

Note that because of an idiosyncracy of the C++ code on the PDA the ‘cold
integer’ field must be provided after the other FUN fields.

The name, body and key fields are self-explanatory. See how we have con-
strained the length of a script contained within a routine to a maximum of 2047
characters — a good length, even with fairly large embedded SQL invocations.

The name FUN is because initially | referred to these as ‘functions’ but they
don't necessarily “take zero or more arguments off the stack and return precisely
one answer”. They are in fact ‘relations’, taking zero or more arguments off the
stack and returning zero or more answers (on the stack). Hence the change of term
to the slightly more neutral ‘routines?.

1This is a violation of the SQL standard, and must be fixed.
2] may slip from time to time — forgive me!

4 SCRIPTING — A BRIEF INTRODUCTION 16

4 Scripting — a brief introduction

Elements within a menu such as buttons and pop-lists can be clicked on using
a mouse (on the desktop machine) or a stylus (on the PB&jptsdefine the
responses to such clicks. Our scripting language is extremely simple, and exists
simply to tie menu entries into the database. The following section is a brief
overview of our simple scripting language. Each command is covered in more
detail in the relevant section in the docum@stlPgm.texwhere examples of the
implementation of the commands are written in the Perl programming language.
For the corresponding C version, see the docurBeniptingLib.tex

The most powerful feature of our scripting language is the ability to script
SQL queries. For example, if we wish to perform an SQL query we simply create
a script containing that query, and use the QUERY keyword.

41 QUERY

Here’s an example of QUERY in action:

QUERY(SELECT Person FROM BADOBS WHERE badobs = 1234)

We've already encountered the BADOBS tabldmalgesiaDBpartl.texThere
are several constraints on the above query (you might have thought of a few al-
ready!) Questions it's worth asking include:

e Where does the result of the query go?
e How do we know whether the query succeeded or failed?

e How do we take a value (for example, from a previous script) and replace,
say, 1234 with that value?

¢ Is there anything else | should know about the QUERY instruction?

Let’'s address each of these in turn, but first a little note aBtuigs The
statement “SELECT Person FROM BADOBS WHERE badobs = 1234” in the
above QUERY is an example oftext string There is another, entirely equivalent
way of submitting the above statement. It is:

"SELECT Person FROM BADOBS WHERE badobs = 1234"->QUERY

See how we put the string in “double quotes” and then submit it to the QUERY
statement. You’'ll sometimes find this variant syntax very useful.

4 SCRIPTING — A BRIEF INTRODUCTION 17

4.1.1 Retrieving results from a QUERY

Our scripting language uses emnplicit stack We never refer to the stack directly,

but perform operations on the stack. So if the above QUERY succeeded, it would
quietly, without any fuss, put the result of the query (here, an integer representing
the Person) onto the stack, where the value would be available for further use.

4.1.2 Query success?

Although SQL is often rather inscrutable in returning error codes and messages (if
it does so at all) we can easily determine whether a QUERY succeeded or failed.
Here’s a script which does just this (and responds appropriately):

'QUERY(SELECT Person FROM BADOBS WHERE badobs = 1234)->
QOK->SKIP->ALERT(Failed!)

See how we've put our script within single quote marks, which allows us to
do SQL-style things like:
UPDATE ITEM SET iResponse =
'QUERY(SELECT Person FROM BADOBS WHERE badobs = 1234)->

QOK->SKIP->ALERT (Failed!)y
WHERE iID = 21,

We can rather arbitrarily attach scripgsponsego various elements in the
ITEM table (described above [REF]). We've done a few other things here, so let’'s
work carefully through the script. The following are important:

— > Each item in the script is separated by this strange arrow, a combination of
a minus sign and a ‘greater than’ sign. Our scripts always work in a linear
fashion, moving from left to right along the line, each item in the script
being evaluated in turn!

QOK is used to determine QUERY success or failure. If the query succeeded,
then one (alogical ‘true’) is put on the stack, otherwise a logical zero (false)
is put there.

SKIP The very simple SKIP command does just what you might expect. If there
is a ‘true’ (1) on the stack, it skips theextcommand,; if there’s a zero, then
the skip simply doesn’t occur.

ALERT displays a prompt on the screen, here the expression "Failed!”.

You can work out what the above script does. If the script failed, the ALERT
is displayed, otherwise the alert is simply skippéd.

3The alert reader will see how simplistic this script is, and already be asking how we respond
other than simply providing an alert. This topic will be covered later!

4 SCRIPTING — A BRIEF INTRODUCTION 18

4.1.3 Inserting a value

In our sample QUERY, it’s rather limiting to ‘hard code’ the value 1234. We need
some flexible method of pulling a value off the stack, and inserting it into the
query itself. Here’s the solution:

'#1234->QUERY(SELECT Person FROM BADOBS WHERE badobs = $[])’

The above script does exactly what the previous one does, but you can see that
we can replace the number #1234 with any value, including a value obtained by a
previous script! Several comments are in order:

e See how when we move the number out of the QUERY, we put a ‘hash’
(pound or tictactoe character) in front of it. This is not a strict requirement,
but it does introduce us to an important concept — therg¢rasedifferent
types of number in our scripting language. These'are:

Integers These are always written with a hash in front of them: #1234,

Fixed point numbers These are ordinary numbers like 1234 and 12.34.

Floating point numbers These are at present only written thus: FLOAT (1234)
¢ When we wish to insert a value within a script, we put the rather clumsy

character combinatiofi]] at the point where the value is to be inserted.
The value inserted there is thgopmosttem on the stack.

e But what if we wish to insert multiple values into a string (for example, into
a QUERY statement)? Look at the following:

"Flopsy"->"Mopsy"->"Cottontail"->"We ate $[], $[] and $[]"

This becomes!'We ate Flopsy, Mopsy and Cottontail" , as
you might expect. In other words, at the time the scrigiassed the top-
most item on the stack goes into the rightm®f$t , and so on, working left
in the string and down to deeper items on the stack.

L4Ultimately we hope to make our number-handling completely compliant with IEEE754r. This
is not a small task, and our current system is functional but rather rudimentary!

51n later versions of PainForm, we will probably eventually introduce a convenient shorthand,
for example prefix the number with an exclamation mark to indicate it's a float!

4 SCRIPTING — A BRIEF INTRODUCTION 19

4.1.4 QUERY limitations

There’s one really vitally important limitation of QUERY, which adresses a defi-
ciency in standard SQL. The problem is this — sometimes we wish to retrieve a
singlerow from the database, but there is no standard SQL mechanism for doing
so. The database engine will appear to simply plod through the whole database,
even if we only want to match a single row. A query returns what it returns. We
remedy this ‘deficiency’ by limiting our QUERY command to retrieve just a single
row from SQL. Some caution is advised, because this command simply retrieves
thefirst match it comes across. If you want multiple rows, then you need to use
the statement described in the following section: QMANY.

Note however that there is nothing which prevents you from retrieving multi-
ple valuesfrom a singlerow in the database using QUERY. The statement ...

QUERY(SELECT Person,Bed,Epoch FROM BADOBS WHERE badobs = 1234)

...1s perfectly valid and will retrieve three values from the relevant row, and
put three items on the stack (if they exist). It simply retrieves results &single
row in the database.

Note that one of the peculiarities of our current implementation of SQL on
the PDA is that the comma list of SELECTed items muist contain spaceso
at present “SELECT Person, Bed, Epoch” will fail on the PDA (Ugh)! [CHECK
ME??]

4.2 QMANY — retrieve multiple values

Consider the following script:

'QMANY(SELECT WARD.ward FROM WARD
WHERE WARD.ward > 0)

This command QMANY is very similar to QUERY — it also queries the
database and puts items on the stack. Howeweitiple rowswill be retrieved.
If there are 55 wards in the database, then those 55 wards will be retrieved, and
the integer values of their primary keys will be placed on the stack. (It's clearly
possible to crash the stack with injudicious use of this quéry).

16\We seriously considered having some sort of limiting argument on QMANY so that we could
retrieveexactlyN (or fewer) rows, but discarded this as desirable but too complex. Also note that
our QUERY/QMANY dichotomy and other statements below are not intended to extend or sup-
plant standard SQL, they are merely conveniences perched on top of SQL, perhaps in a somewhat
clumsy way.

4 SCRIPTING — A BRIEF INTRODUCTION 20

There’s another wrinkle in the way we wrote the above statement. See how
we've broken the statement across two lines. This is merely for convenience of
reading — scripts are always stored without any spaces or carriage returns, and
unexpected white space will usually result in an error. It is however very conve-
nient to write scripts in a ‘broken’ fashion, and we will resort to this repeatedly.

In our source code, we always turn scripts into single lines before we insert them
into the database, using our DogWagger oneLine=‘yes’ convehtion.

QMANY has a minor catch for the unwary. It simply plonks all of the results
retrieved on the stack, so the person performing the query will need to know how
many results were retrieved for every row in the database. Ordinarily this isn’t a
problem. What about the case where a null result is retrieved? We have a special
representation of NULL in our scripting language, in fact the script fragment:

'NULL->ISNULL’,

...willinsert a NULL value onto the stack, and then trivially test for the result
using ISNULL, of course returning the value #1 (trd€]XREF TO SCRIPTING
DESCRIPTION OF THESE: DETAIL]

We have limited our queries so that statements like “SELECT * FROM PER-
SON” are not supported on the PDA. In the context of our scripting language,
such queries are always unhelpful and usually dangerous!

4.3 Other SQL: UPDATE, INSERT, and more!

In our scripting language, we have skeletonised SQL, down to the very basics we
require. Other vital SQL commands are covered by the simple DOSQL scripting
instruction. We also have rudimentary COMMIT and ROLLBACK instructions,
and several necessary but ‘proprietary’ scripting commahétere they are:

4.3.1 DOSQL — UPDATE & INSERT

There are few wrinkles here, we simply say things like:

'DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
DOSQL(INSERT INTO BADOBS(badobs,Bed,Epoch,Person,boFlag)
VALUES($[],$[1,$[1,%(.,0))

7L ook at the EX source of this file for examples.

Byes, true and false are simply the integers #1 and #0 respectively.

9] hasten to say that these are ‘proprietasgtiptingcommands, and don't violate the spirit of
SQL.

4 SCRIPTING — A BRIEF INTRODUCTION 21

The above is an actual fragment from a script you'll encounter in this docu-
ment. There are a few embarrassing little secrets about our SQL syntax on the
PDA, which we still need to crack into shape. These are:

¢ In the SET statement within an UPDATE, there may not be spaces to the
left and right of the equals sign. For example, in the above fragment "SET
bolnactive = 1” would fail on the PDA.

¢ Inthe INSERT statement, there are several places where spaces are similarly
disallowed on the PDA. Rather arbitrarily, there may not be a space between
the table name and the list of columns in parenthesis, nor may there be a
space between to the left or right of the word valdes!

¢ Inthe INSERT statement, it is advisable to have the first item in parenthesis
(badobs’, in the above example) as the primary key. The VALUE must of
course be in a corresponding position. [CHECK ME, FIX ME]

4.3.2 COMMIT and ROLLBACK

On the PDA, once we've written to the database, as things stand we auto-commit.
This is perhaps less than optimal, but we haven’t yet implemented a rollback func-
tion there. The COMMIT and ROLLBACK commands should work properly in
the Perl (desktop) version. They take no argument.

4.3.3 KEY

We have reasonably constrained our PDA database to work with single integer
primary keys. We disallow compound primary keys. This approach works well,
and suggests a further refinement — that we facilitate generation of sequential
keys. Now in standard SQL there is no facility for auto-incrementing keys, so
we do two things. We create a standard SQL table which contains a column for
each primary key. Keys are retrieved from a single row representing our database,
and the relevant field is then updated, implementing auto-incrementing keys. The
second thing we do is that we create a KEY command, which, given the name
of the database table, will perform the complex retrieval and incrementing of the
key. The database table is called UIDS, and each ‘generator’ column consists of
the name of the relevant database table, prefixed by the letter ‘u’. So, for example,
the generator column for the PERSON table is called ‘uPerson’.
Here’s an example of the usage of the KEY command:

20These irritations still need to be fixed.

4 SCRIPTING — A BRIEF INTRODUCTION 22

'KEY(Medscore)->
DOSQL(INSERT INTO MEDSCORE(Epoch,msoValue,msoNature,medscore)
VALUES(S$[],$(1.$0,$00))

In the above fragment, the remainiifj values are already on the stack.

4.3.4 ME and SETME

Another ‘convenience’ we require is the ability to identify who is performing an
action. Several of our tables need this information, encoded (of course) as an
integer (primary key) value in the PERSON table. This value is supplied and
stored when the user logs on, but how do we obtain it? We simply say: ME.
Here’s a script fragment:

'KEY (Epoch)->NOW->ME->DIGUP->
DOSQL(INSERT INTO EPOCH(epoch,oMade,Person,Process)
VALUES($[], TIMESTAMP "$[]",$[],%[]))’

From the preceding section, you know what KEY does. For now, you can
more-or-less ignore the NOW and DIGUP commands (which provide a timestamp
and retrieve a stored value, but more of this later)!

4.4 Menu-related commands

As we've mentioned in previous sections, a key component of our user interface
is the menu which contains buttons, text fields and so forth. We have several
menu-related commands, the simplest of which is MENU. For example:

'"MENU(PATIENT)’

...simply takes us to the PATIENT menu, displaying that menu as specified
in the database. The previous menu is stored on a special menu stack. When we
wish to return from the current menu to the previous one, we simply say:

'MENU(#1)’

This command takes us backie menu It is possible to pop more than one
menu (go back several menus, discarding the intervening ones) by specifying a
number larger than 1. MENU(#0) reloads the current menu.

4 SCRIPTING — A BRIEF INTRODUCTION 23

4.4.1 Localvariables

Within a menu we can create up to 32 special ‘local variables’ where we can store
things. A local variable can be allocated an alphanumeric name to make its use
more convenient. Look at the following snippet:

'NAME(id)->
NAME(ward)->X->SET(ward)’

We create two namesvard andid) and then use SET to allocate a value to the
ward variable. How then do we retrieve the valuewdrd? Thus:

'$[ward]’

Note the usage of a dollar sign followed bguarebrackets:

4.4.2 Menu utilities

In order to use and modify menus and their components, the following are most
useful:

ALERT Display a string on the screen;

CONFIRM Confirm an action, with YES and NO buttons; If YES is clicked,
then #1 goes to the stack (true), otherwise #0.

ASK Request an input string before continuing. The string is placed on the stack
(or NULL if the user cancels).

EXIT Terminates the PDA program. The user is always asked to confirm the exit.
If EXIT is attempted from a menu deeper than the initial one (after log-in)
then the current state is saved, so that on re-entering the PDA program, the
user can resume where they left off!

ENABLED allows us to enable or disable a particular widget. At present, this
command is used in the initialisation of an item. (Later we might re-institute
the ability to pass a message to a menu component telling it to ‘disable
itself’). Submitting #0 (false) will disable a menu component.

TITLE allows us to set the title of the menu to the value of the string provided
on the stack.

We also have rudimentary functions called PAPER and INK which allow us in
Perl (but not yet on the PDA) to specify the colour of menu components.

2IAlthough it seems logical to use a similar convention within a string, we haven't yet imple-
mented this.

4 SCRIPTING — A BRIEF INTRODUCTION 24

4.4.3 Fancy menu commands

You won'’t often need to use these commands. They are POPMENU and PUSH-
MENU. PUSHMENU is not actually used (and exists mainly for purposes of sym-
metry). POPMENU can be used to pop a menu off the menu stack. Here’s an
example:

'POPMENU(#0)->SET (stkmenu)->SET (xval)’

The single numeric parameter says how many menus to pop onto the stack.
Menus are popped as firstly a menu name (as a string), and secondly the value of
X for that menu (an integer).

Two other interesting menu commands are ROLLMENU and LINESLEFT.

It sometimes happens that a table within a menu is too large to be completely
displayed. When the system tries to draw the menu it records the number of lines
left undisplayed, which can be retrieved using LINESLEFT. It is then possible
to invoke the ROLLMENU command to re-display the menu, with the contained
table shifted down to display the next set of lines. Note that ROLLMENU wiill
push the current version of the menu to the menu stack, so if we say MENU(#1)
after a successful ROLLMENU, then we return to the same menu, but with the
table lines shifted back up again. Here’s a snippet containing ROLLMENU which
we use in displaying patients in a ward:

'ROLLMENU->Alert(No more!)->&ManyBack(PATIENT)’

If ROLLMENU fails, then processing continues as if nothing happened, but if
it succeeds, then script processing ceases immediately and the new ‘rolled down’
version of the menu is displayed instead.

45 Local variables, X and V

In constructing our scripting language, we have tried to keep things simple. One
aspect of this simplicity is mandating that a minimum of information is kept lo-
cally in a MENU, and that where we move from menu to menu, waakpass

vast swathes of information around. In fact, we are limited to passisiggie
integer between menus. All other information must be written to the database.
Although this constraint seems ridiculously limiting at first, it is very powerful.
Even if a script within a menu crashes (and even if the menu itself is corrupted) it
is highly likely that our PDA program as a whole won't cr&$and that the next
menu will be completely unimpaired.

220ther features we've engineered do help!

4 SCRIPTING — A BRIEF INTRODUCTION 25

The single integer we pass between MENUSs is simply referred to in a script
asX. In the following example, wassumehat the integer value in X refers to a
particular patient; we use the value obtained to retrieve the patient’s ID number
and surname.

"X->&FetchldNumber->X->&FetchSurname’

Don’t worry about thénvocationsof the routinesFetchIdNumber and Fetch-
Surname as we’ll cover this sort of behaviour in the next section. Simply see how
we use the transfer variable X. (The symbol X is short for ‘Xfer’ or transfer).

Before we move on to examine routines, we need to find out two more things
The first is how we set the value in X. We use the SETX command as shown in
the following code fragment:

'QUERY(SELECT persdata FROM PERSDATA
WHERE pdoSurname = "$[]")->QOK->
SKIP->=Fail(No surname match!)->

SETX

You can readily work out what this does. Using a QUERY we look for any
single person with the given surname, fail if there is no match, and otherwise
(dangerously) set the X value to the integer key retrieved. Don’'t worry about what
the equals sign beforgail means, as it's covered in the following section.

The second thing we need to do before we look at routines and flow of control,
is to meet a second single-letter instructi®n:V is used in the peculiar context
of a table displayed in a menu, be it on the PDA or in the desktop version of our
program. Each and every row of a table displayed within a menu is associated
with a single primary key! For example, if we are using a menu table to display
information about patients on a ward, each patient will have a row in that table,
and each row will be associated with the primary key for that PERSON. We can
attach a script to any component of that row, and refer (in such a script) to that
person using the instruction. Here’s an example:

'V->SETX->MENU(PATIENT)’

This script (attached to a menu of patients) gets the patient ID, sets the value
of X to that value, and then moves to the PATIENT menu!

4.6 Flow of control and the stack

We've already encountered one simple instruction which allows us to ‘make de-
cisions’ and move around within a script, the SKIP instruction. Computer experts

4 SCRIPTING — A BRIEF INTRODUCTION 26

reading this code will probably be somewhat bemused by my simple SKIP, as it’s
the sort of instruction which was used and then abandoned very early on in the
development of programming languages.

The reason why I've retained this ‘trivial’ instruction is simplekéeps things
linear. A complex source of error in programming languages is the almost invari-
ant presence of tricky structures which determine ‘flow of control’. Most modern
languages have several of the following such commands: WHILE, FOR. .. NEXT,
DO, UNTIL, IF...THEN ...ELSE, and more. These can usually be nested. In
addition most modern languages have a set of complex conventions for CALLiNg
routines, and passing values to and fro. Passing of parameters in such languages is
often by value, but many allow for passing of parameters by reference, and other
complex conventions.

We have just five simple commands, which are sufficient. They are:

SKIP
RETURN
REPEAT
&routine

The last item is a ‘prototype’ — anything beginning with an ampersand (&) is
regarded as a routine, and the language interpreter looks up the routine, goes to it,
and then RETURNS at the end of the routine. The alert reader will have noticed
that although | said there are five commands, the above list contairieyusThe
omission is simple — you can replace the & with an equals sign (=routine) and
what will happen is that there will beo returnfrom the called routine.

Let's look at each of the above in turn, in more detalil.

4.6.1 SKIP

SKIP is really very simple. It reads a value off the stack, and if and only if the
value on the stack is the number 1, then the following instruction is skipped. The
integer number 1 (#1 in a script) represents the value ‘true’, and only it will do!
If anything other than true is on the stack, the SKIP simply won't occur. Here are
two trivial examples:

'#1->SKIP->RETURN->ALERT(Skipped the return)’

In this example, the RETURN statement was skipped because we placed a true
(one) on the stack. In the following example, we don’t skip the ALERT statement,
because a non-true value is on the stack (Here the value is zero, for ‘false’).

4 SCRIPTING — A BRIEF INTRODUCTION 27

#0->SKIP->ALERT(Not Skipped)’

See how we ‘submit an argument’ to the ALERT statement, by placing “Not
Skipped” in parenthesis after the ALERT. Had the value on the stack been true,
then both the ALERT and the “Not Skipped” would have been skipped over. We
have deliberately structured things sorexs to allow multiple arguments to be
skipped over. Only a command and the associated (optional) something in paren-
thesis can be skipped. This limitation keeps things simple.

4.6.2 &routine and =routine

In our scripting language, named routines are stored in a table called the FUN
table?®> The script parser retrieves and runs these routines when it encounters
& or = followed by the name of a function within a script. The only difference
between the two options is that if you specify ‘=’ then theredsreturnto the
calling routine. You can see that this approach is very useful in combination with
SKIP to implement a clean branch in code. Either you skip the invocation, or you
irrevocably branch to it! SKIP is also clearly useful with & as it allows conditional
calling of a routine. Best of all, the simple linear nature of such scripts removes
the burden of complex nested if. . .then. .. else structtires.

The only way of passing parameters to and from such routines is on the stack.
There is no ‘clean-up’ of the stack on return from a routine (but see Settion
below). This approach has pros and cons. Getting rid of parameter passing and ag-
onizing over ‘by reference’ versus ‘by value’ is a pro, in my book. Stack cleanup
can be a minor irritation, on the con side.

Here’s a simple example of a script which checks a date by copying it, in-
voking a routine called &ValiDate, and if this fails, invokes the relevant ‘failure’
routine.

'COPY->&ValiDate->SKIP->=Fail(Invalid Date: $[])->SET(dob)’

Here’s how we create th&ai/routine:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (176,
‘Alert($[])->FAIL’,

"Fail’);

230riginally named as it stored functions, but now we’re often dealing with routines which may
return one, several or no values on the stack.

24As always, there is a cost. Often it's necessary to create ‘trivial’ routines where in a more
complex language, a complex nested structure would have ‘sufficed’!

4 SCRIPTING — A BRIEF INTRODUCTION 28

All we do is Alert the user, pulling the offending value off the stack before
we irreversibly branch t¢fail. Note that in a lot of the following documentation,
we will refer to a routine name using the outrageous conventfarif rather than
putting an & before it (&Fail)!

Each FUN value must clearly have a unique primary key. Ideally we should
perch a ‘meta-editor’ above our current structure to handle such keys, but at
present we manually code each function and its key.

4.6.3 RETURN

RETURN is simplicity itself. It returns flow of control to the calling script. Note
that at the end of a script if there isn’t a RETURN statement, there is assumed to
be one, and control will automatically return to the caller. Examples of RETURN
have already been discussed.

4.6.4 REPEAT/STOP

REPEAT is a little tricky. What repeat does is it repeats a given rottirever
Forever? Well, that's not particularly useful, is it? There is a catch. If the script
interpreter encounters a STOP command, then execution of the current script will
cease” If that script is being REPEATed, then and only then will REPEAT stop
repeating and carry on with the rest of the script in which the REPEAT command
occurred.

As with all ‘looping’ commands, REPEAT must be treated with respect. Once
you've got the hang of it, it should work well. You can see that STOP can con-
veniently be used with the SKIP command. Simply SKIP over a STOP if the
termination condition hasn’t yet been met! Here’s an illustrative code fragment:

'MARK (#3)->
QMANY(SELECT PROCESS.process FROM PROCESS WHERE

PROCESS.rEnd IS NULL AND

PROCESS.Person = $[] AND

PROCESS.ProcType > $[] AND

PROCESS.ProcType < $[))->
REPEAT(&KIllProc)->UNMARK’

We select a (potentially) long list of processes which we ‘kill’; once the killing
is over we proceed to the UNMARK statement (which is not strictly relevant to
our current discussion, so we’ll ignore it for now, as we ignore MARK). Here’s a
fragment from&illProc:

25Almost like abreak; command in C.

4 SCRIPTING — A BRIEF INTRODUCTION 29

'DEPTH->GREATER(#0)->SKIP->STOP’

DEPTH is used to check the stack depth, and if there’s still something to pro-
cess, we skip over the STOP statement, otherwise we terminate.

4.6.5 Guilty secrets

While | was developing the scripting language, | tried many ‘experiments’, and
have retained a little legacy code which still needs to be removed. When using
REPEAT, it's awfully convenient to ‘shield’ the rest of the stack from interference
by marking the stack. (This approach, discussed below, is a very primitive form of
‘stack clean-up’). A seemingly logical consequence was the creation of an ugly
command called URZN, which stands for ‘unmark and return if zero or null’.
Although occasionally useful, this command is now deprecatedhodld not be
used A few instances of its use will eventually be cleaned up.

Another experiment which was much better created messaging between items
within a menu. | have temporarily disabled this facility, but intend to re-create it.

4.7 Managing the stack

| believe that ideally a language should be stackless, and have conceived of such
languages (also check out, for example, stackless Python). However within the
constraints of the Palm environment, | rapidly came to the conclusion that the
crippling liabilities of the operating system (OS) would make a stackless, heavily
interrupt-driven programming language very difficult to implement without re-
engineering large parts of the OS, or even writing my own OS. | therefore chose a
stack-based paradigm.

Once the stack-based decision has been made, it’s highly desirable to have two
stacks rather than one. A dual push-down automaton is Turing-complete, but quite
apart from this attractive feature, having two stacks often makes rather tricky tasks
easier. We therefore have an ‘implicit’ stack and in addition, a second stack where
we can BURY and retrieve (DIGUP) values. The simple commands available for
manipulating the stack are:

COPY Copy the topmost item on the stack
DISCARD Discard the top stack item
SWOP Swop the top item and the next one down! A very useful command.

BURY Take the topmost item on the stack, and bury it on the second stack. The
only way you can retrieve this value is using DIGUP.

4 SCRIPTING — A BRIEF INTRODUCTION 30

DIGUP The opposite of BURY — retrieve a value from the second stack.

MARK Mark the stack at a specified point. Mark(#0) marks the current top of
the stack, whereas MARK(#1) marks the stack one item deep to the current
top, and so on. When an UNMARK occurs, all items above the mark point
are discarded from the stack. Note that once a MARK has been set, all items
deep to the MARKed point become inaccessible. It's as if the stack started
at that point. Multiple marks can be made and then UNMARKED.

UNMARK The opposite of MARK. Once the stack is unmarked, hidden items
once again become accessible (down to the previous MARK).

DEPTH The current number of items on the stack (doescount items below
the most recent MARK).

Powerful manipulation of the stack is possible with the above commands, al-
though admittedly BURY/DIGUP are mainly used in our code to compensate for
historical inadequacies in our PDA SQL code!

4.8 Altering text

We have a number of commands devoted to manipulating text.

IN Is the string on the top of the stack contained within the next string down?
Returns #1 or #0 (true or falsé).

SPLIT Use the string on the top of the stack as the ‘splitting point(s)’ on which
to split the next string down. The ‘splitting point string’ text vanishes. May
produce multiple strings; if no match, leaves the deeper string unchanged
and merely discards the ‘splitting string’ on the top of the stack.

JOIN Using the topmost string on the stack, meadestrings below it on the
stack (down to the most recent mark), inserting the topmost string text in
between all of the other strings. Useful for inserting commas or spaces,
creating a single string. Note that you should probably justsein most
circumstances!

LENGTH How longis a string in 8-bit characters? We don’t support UNICODE,
at least for now.” Do not confuse with DEPTH, which is a stack instruction.

26|deally we should expand this command to, perhaps, incorporating most of standard Perl
regex.
2TThis is a major deficiency of the current implementation of PainForm, and must be fixed.

4 SCRIPTING — A BRIEF INTRODUCTION 31

UPPERCASE Rather cumbersome translation of a string to uppercase (capital
letters).

LOWERCASE Transform entire string to lower case. We do not at present sup-
port sentence case or other friffs.

CUT takes an integer on the top of the stack, and a string beneath this. The string
is cut into two strings at the stated point. If the string is shorter than the cut
point, it is left unchanged, and NULL is put on the top of the stack.

4.9 Arithmetic and Logical commands

We have a number of such commands, providing (at present) for basic logic and
arithmetic alone. It will be easy to accommodate more advanced maths functions
applied to floating point numbers, with calls to Rick Huebner’s MathLib.

ISNULL Is there a NULL on the stack? NULL may have been put there, or may
be the result of an SQL query, or even the result of an error in an operation!
Removes the topmost value on the stack, replacing it with #0 or #1.

NULL Insert a NULL on the stack.

ISNUMBER s the item on the stack a number? Replace the top item with the
answer in a similar fashion to ISNULL.

BOOLEAN Convert the topmost item on the stack to a Boolean value. Null,
zero, ‘false’ or ‘F’ all become zero, regardless of case; others default to
one.

SAME Are two stack items identical? Note that O is not the same as #0, for
example.

GREATER, LESS Greater subtracts the item on the top of the st#okn the
next (deeper) item. If the result is positive (the deeper item is greater) then
#1 (true) is returned, otherwise #0. LESS is true only if the deeper item
is smaller. Note the analogy to SUB (below). At present GREATER and
LESS will force an error if non-integer, non-float values are submitted.

NEG Returns the negative of a number.

NOT If there's a zero on the stack, return #1. Otherwise, return #0.

28Should we amalgamate UPPERCASE, LOWERCASE, and more generic character-modifying
abilities?

4 SCRIPTING — A BRIEF INTRODUCTION 32

AND, OR Logical AND or OR. At present we don’t have an XOR, but this is
easily implemented. AND only returns #1 if two copies of #1 are present
on the stack; otherwise #0 is returned. If either of the numbers isn't an
integer, then an error is forced! (Use BOOLEAN to convert other types to
integer logic)! It's tempting to also ‘save’ the error by forcing a NULL to
the stack, but for now we don't.

SUB Subtract the topmost stack item from the number deep to it, and replace
these two with the result.

DIV, MOD DIV divides the superficial number on the stack into the deeper one
and returns the quotient; MOD is similar but returns the deeper number
modulo the superficial one (i.e. it gives the remainder).

ADD, MUL ADD and MUL respectively add and multiply two numbers, replac-
ing them with the product.

INTEGER, FLOAT INTEGER has a variety of functions (See DATE/TIME sec-
tion below) but also serves to convert a floating point number (IEE754 dou-
ble precision) to an integer. FLOAT converts its argument to a floating point
number, and can therefore be used to turn a numeric string or fixed point
number into a floating point one.

4.10 Date- and time-related commands

An important component of our SQL database is managing times, dates, and
timestamps. We can convert between Gregorian and Julian dates. [We still need
to do some work on daylight saving and regional time codes].

NOW Returns the current timestamp (YYYYMMDDHHMMSS). At present we
have no decimal after the seconds (SS).

DATE Turns something into a Gregorian date (YYYYMMDD). If a number is
supplied, it is assumed to be a Julian day number/date, and is converted to
the corresponding date.

TIME Makes a time (HHMMSS). An integer or floating point number is re-
garded as a number of seconds (since midnight), and converted appropri-
ately.

TIMESTAMP Similar to DATE and TIME but does the whole YYYYMMD-
DHHMMSS enchilada.

4 SCRIPTING — A BRIEF INTRODUCTION 33

FLOAT Takes something and turns it into a floating point number. If that some-
thing is a date or a timestamp, then a Julian date is produced. If we submit
a TIME, then the time is converted into a number of seconds, as a float.

INTEGER Turns something into an integer, if possible. Similar rules apply for
dates or times submitted as arguments.

TICKS A debugging function which examines the internal clock (of the PDA,;
for now the Perl microtimer isn’t used). It returns the number of ticks on
that clock. The granularity of the PDA clock is usually about 10ms.

4.11 Caching and other functionality

SQL is complex and the complex scripting we require is time-consuming, some-
times with multiple SQL queries in one script or repeated invocation of a particular
script. Optimisation is therefore important. A vital component of our optimisa-
tion is isolating (caching) data in a fairly transparent way. For example, if we're
dealing with a particular person, we can conveniently and temporarily ‘forget’
about other people in the database, sequestering the relevant data in a cache! This
caching function is at present not implemented on the desktop as it’s not required
there.

Consider the following snippet:

$[id]->CACHE(PROCESS.Person.3[])

Here we CACHE the data within the PERSON table specifically associated
with the particular person referred to in the local variaBfie]] . It is vitally
important that when we no longer need to cache, we release this table using:

UNCACHE(PROCESS)

We can also cache a table which is dependent on another table. For example,
we might cache the EPOCH table thus:

CACHE(PROCESS:EPOCH.Process)

The above convention makes it clear that the PROCESS table is the main table,
that EPOCH is dependent on it, and that the linking keyrizcess

If we cache a table dependent on another table, we should first cache the
table depended on. So, for example, if we cache EPOCH and PROCESS, we
first CACHE(PROCESS) and then only do we specify the above code to cache
EPOCH. When we uncache these, we first uncache EPOCH, then PROCESS, i.e.
we uncache in the reverse order.

4 SCRIPTING — A BRIEF INTRODUCTION 34

When a table is cached, all of the relevant keys are retained in an internal
linked list to facilitate caching of dependent tables. If there are no dependent
tables due to be cached, then creation of such a list isn’'t necessary. To save time
we can prevent creation of the list thus:

CACHE(PROCESS:"EPOCH.Process)

Inserting the tilde before EPOCH suppresses creation of a linked list when
EPOCH is cached (for all of the relevant processes specified when PROCESS was
cached).

4.11.1 Other functions

We won'’t here discuss the following commands: DEBUG, DISTINCT, FAIL,
PRINT, RUN, and TEST, most of which are used infrequently or for debugging.

5 Menus for the Analgesia Database

In a previous documentPQA data capture based on a form template de-
scribed in some detail a proposed menu system for data capture into an Analgesia
Database. In the following section, we will describe the dynamic menus required
to implement such a user interface. Our discussion order is more-or-less the same
as that of the corresponding menus in the PDA data capture docttnent.

We do not here discuss user log-on screens, although the rudimentary capabil-
ity is present within our database to implement such ‘security arrangeniénts’.

29The current menu system differs in several significant aspects from the initial one we imple-
mented on desktop and PDA, but as we're writing, or as is often the case, rewriting, our documen-
tation, we will try to keep up to speed with the newer version!

30For current log-in capabilities, see Sectina L

http://www.anaesthetist.com/analgesia/pdf/PDAdata.pdf

5 MENUS FOR THE ANALGESIA DATABASE 35

5.1 Ward selection (900)

Figure 1: Ward selection menu

This menu is deceptively simple, on the surface. Deep down there is substantial
complexity, with some tricky concepts to boot. The greater part of the screen is
taken up by amonomorphic’ table® made up of buttons, each displaying a ward

name.| Quit| and Searcﬁ buttons permit exit and searching respectively. Here’s
the SQL which creates the menu:

INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (900, 20, 'Select WARD’, 'MAIN2’, 1),

UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE

(9007, 2
(9008, 2
(9009, 2
(9000, 2,
(9010, 9

ITEM
ITEM
ITEM
ITEM
ITEM
ITEM

SET
SET
SET
SET
SET
SET

& 'wdbtn’, 1),
'Search’, 'Sbtn’, 1),
"Exit’, 'Qbtn’, 1),
'New patients’, 'np’, 1),

X, 'Wd menu’, 8);

ilnitial = '&ListWards’ WHERE iID = 9010;

iResponse = 'COMMIT->EXIT" WHERE iID = 9009;

iResponse = 'MENU(SEARCH)' WHERE iID = 9008;

ilnitial = 'COPY->$[activeW]->SWOP->IN->NOT->SKIP->TOGGLE’ WHERE iID = ¢
iResponse = 'V->SETX->MENU(PATIENT) WHERE ilID = 9007;

iResponse = '#1->SETX->MENU(NEWPTS)" WHERE iID = 9000;

--- Item 9000 is a later addition. See the New Patients menu!
UPDATE ITEM SET ilnitial = '$[activeW]->"new"->IN->NOT->SKIP->TOGGLE’ WHERE ilD = 9000;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

miX, miY, miwW, miH, miGroup)

3*Monomorphic refers to the fact that the table is made up of several columns of identical
items, unlike a polymorphic table which has several rows potentially made up of dissimilar items.

5 MENUS FOR THE ANALGESIA DATABASE 36

VALUES (901, 900, 900, O, 0.001, 0.001, 0.999, 0.999, 0),
(992, 900, 9008, 2, 0.750, 0.910, 0.200, 0.080, 0),
(993, 900, 9009, 1, 0.050, 0.910, 0.200, 0.080, 0),
(995, 900, 9000, 4, 0.31, 0.910, 0.38, 0.080, 0),
(994, 900, 9010, 3, 0.015, 0.030, 0.970, 0.881, 0);

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName,
irFraction)
VALUES (1, 9010, 9007, 1, 'rowbtn’, 0.25);

Several features are evident — the sparse nature of the data elements (for
example, there is only one ilnitial script); that e need to start exploring how
scripts work; and the complex relationships between menu components. Recall
the component types from talite— 2 is a button, 9 a monomorphic table, and 20
a menu.

Let’s look in more detail. What we do above is create five items, with fairly
arbitrary ID numbers (7-10, and 900; we will generally use larger ID numbers for
items which are also menus, as a sort of aidemire). We next group the items
into the menu (making the menu self-referential, as described above in section
3.2).%2 Finally, we create a monomorphic table to contain the ward names, with
each column of buttons taking up 25% of the table width.

Where items have associated scripts, rather than including these scripts in the
initial INSERT statement, we add an UPDATE statement. Let's look at the as-
sociated scripting. Th&XIT and MENU(SEARCH}tatements should be self-
explanatory. TheListWards routine we’'ll explore in a moment, but what about
the fragment->SETX? It should be clear that the sequeneeis used to lead
from one script component to the next. but what are the two components? We
have taken a rather abrupt leap into scripting, bec®s8ETX contains several
complex ideas. These are:

¢ In a monomorphic table, we will always map each copy of the single com-
ponent to a unique ID of something within our database! \dae of the
ID variable associated with such a component is referred to as V',

e When we move from one menu to the next, we only ever passlatum to
the following menu!! This datum is referred to as ‘¥.

The former idea means that we can trigger a unique response to a click on
each button (here, go to a particular ward); the latter makes for extremely robust
programming, and constrains us to careful, logical menu design.

32You can see that creation of menus would be facilitated by a new level of abstraction where
we didn't have to painstakingly write the SQL! This program is planned but no such animal yet
exists in our suite of programs.

33y is for variable, X is for ‘transfer’ ie. Xfer!

5 MENUS FOR THE ANALGESIA DATABASE 37

By default, the datum passed to the next menu is the datum received by the
current one (which begs the question “What is the value of this datum in this, the
first menu?®*) but in our particular circumstance, we wish to pass the ID of the
ward we will ‘visit’. Fortunately, we can access this ID — we just refer to it as
V. We set the new value of X that we will transfer to the WARD menu by saying
SETX We will sometimes refer t&X as thesubjectof the menu. And that's about
it, apart from the minor matter ofistWards.

5.1.1 Obtaining a ward list

Here’s the routineListWards, spread over several lines for easy reading. It ob-
tains the IDs of all wards. As is now the case for all poplists, we cneaits of
variables, the ID of the ward associated with the actual ward number!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (5,
'QMANY(SELECT ward,swrdText FROM WARD
WHERE ward > 1 AND cold IS NULL),
‘ListWards’);

See how we embed an SQL statement in a script! But take careful note — we
have chosen to add a further layer of abstraction between ourselves and ODBC.
To exclude the staging ‘new’ ward, have> 1 in place of> 0. By checking for
the ‘cold’ flag, we allow unused wards to be hidden from sight. We will script our
SQL in three quite distinct ways. The options are:

QUERY — retrieve asingle itemusing an SQL query;
QMANY — retrievemultipleitems;

DOSQL — execute an SQL statement, but retriea¢hing for example, perform
an UPDATE or INSERT.

You can see the power and sense of scripting our SQL thus. This approach can
even contribute to query optimisation. In the above statement, we need a whole
list of wards, so we use QMANY to obtain that list. The exclusion of a ward ID
of 1 is because in our listing of wards, we will also create an ‘new’ or ‘unknown’
ward, to allow for the case where we know the person is somewhere, but don’t
know where they aré’

34The ID of the user currently logged on!
350f course, we might wish to view this ‘ward’, in which case the SQL could be modified
accordingly.

5 MENUS FOR THE ANALGESIA DATABASE 38

Actually, the above statement is inelegant, because for each ward we obtain
not only thelD of the ward, but also its name. This seems ugly, but works well for
creation of a monomorphic table — it makes sense to simply provide both values
routinely, rather than simply providing just the ID, and then have the monomor-
phic script routinesook upthe text name corresponding to each¥D!

5.1.2 An experimental routine

Let's consider a (tentative) routine to pick out just the active wards. This routine
isn’t actually used, as we take a different approach!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (6,
'#0->SET(useW)->
MARK(#0)->BURY (#0)->
QMANY(SELECT Bed FROM BADOBS WHERE boFlag <> 0
AND bolnactive IS NULL
AND cold IS NULL ORDER BY Bed)->
REPEAT(&SetActive)->REPEAT(&Retrieve)->
JOIN()->Alert(Flagged patients are in $[])->
UNMARK’,
'ShowActiveWards’);

In the following we might use the experimental ‘send’ routine to send a mes-
sage (just a blank) to the widget named according to the number of the ward!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (7,
'DEPTH->GREATER(#0)->SKIP->STOP->
DIV(#10000)->INTEGER->SET (useW)->
DIGUP->COPY->BURY->
$luseW]->SAME->NOT->SKIP->RETURN->$[useW]->BURY’,
'SetActive);

5.1.3 Listing rooms within a ward

Here’s a similar routine to list rooms, given a particular ward. As usual, we list
couplets of ID and text for each room.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (249,
'QMANY(SELECT room,srmText FROM ROOM WHERE Ward = $[]),
‘ListRooms’);

36we use an identical approach for creating poplists, showing the power of this associative
method!

5 MENUS FOR THE ANALGESIA DATABASE 39

5.2 Patient selection within a ward (920)

Figure 2: Patient selection menu

In this menu we demonstrate use of our other complex component pollye
morphic table! This component (which contains patient information, and allows
access to individual patient details), and two buttons make up the whole menu.
The two buttons are pretty well self-explanat to return to the previous
menu, and Admit] to admit a new patient to the analgesia service. Components
of the table will also allow us to demonstrate labels, popmenus and checkboxes.

An important question is “Which patient details are sufficient?” We are con-
strained to a degree by the resolution of the PDA screétere are the fields we
have chosen:

e Surname
e ID

e Room

o PM*

The ID refers to the unique hospital number of the pati€ndom and surname
are self-explanator{f, and ‘PM’ is used to indicate at a glance whether the patient
is ‘special’, using a checkbox. Here’s the SQL.:

37and by a desire not to make any screen too busy

38We have recently amended this to a more generic symbol: [/] — the exclamation mark signals
that the patient is ‘flagged’ for one of several reasons, including problems, PM review, and ‘not
yet seen today'.

39In New Zealand, generally the ‘NHI’, or National Health Index number.

4ONoting that we do not mangle compound surnames

5 MENUS FOR THE ANALGESIA DATABASE 40

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (920, 20, 'Select Patient’, 'PATIENT’);

INSERT INTO ITEM (ID, iType, iText, iName)

VALUES (9920, 1, 'S, sm),
(9921, 2, v, D),
(9923, 3, P, PM),
(9925, 2, '‘Back’, 'BK),
(9926, 2, ‘More’, 'BK),
(9927, 2, 'Admit’,; Adm’):;

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (9922, 6, 'r, ’'Room’,
->X->&ListRooms’);

INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (1240,8,'[No patient found for this ward]’,’PtThl’,8);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (921 ,920, 920, 0, 0.001, 0.001, 0.990, 0.990),
(924, 920, 1240, 1, 0.001, 0.001, 0.999, 0.850),
(9925, 920, 9925, 2, 0.05, 0.900, 0.200, 0.080),
(925, 920, 9926,99, 0.75, 0.900, 0.200, 0.080),
(923, 920, 9927,3, 0.400, 0.900, 0.200, 0.080);

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction, irEnabled)

VALUES (9923, 1240, 9923, 4, '-I-, 0.11, 0),
(9922, 1240, 9922, 3, 'Rm’, 0.20, 1),
(9921, 1240, 9921, 2, 'ID’, 0.299, 1),

(9920, 1240, 9920, 1, 'Surname’, 0.40, 1);

Explanation is in order. First, we create the PATIENT menu, then the items
which populate it. These items are the two buttons, and the polymorphic menu
together with its components — a label for the surname, a button containing the
ID, a checkbox for the *-I-’ alert value, and a popmenu for the room within the
ward.

We used to hard-code the list of items in the popm&rilihere are a few other
frills. We use the iText field of the polymorphic menu to provide a default message
(‘No patient found...’)}? as usual the names are arbitrary conveniences of little
worth; and the iText values of some items seem rather arbitrary and meaningless
— they are. Also see how the *-!I-’ checkbox is disabled, preventing the casual
user from here altering it!

“INow we dynamically create this list.
42Display of this message is still to be implemented on the PDA.

5 MENUS FOR THE ANALGESIA DATABASE 41

On entering the menu we also create the local variable $id (used later) and the
$ward variable which records the ID of the current ward, obtaining this value from
the transfer variable X. The $ward variable is for the usé&aterDetailMenu
which in turn might invokeReadmitPatient.

UPDATE ITEM SET ilnitial =
'NAME(id)->
NAME(ward)->X->SET(ward)->
X->TITLE(Ward $[])’
WHERE iID = 920;

We still need to attach functionality to the various buttons and other compo-
nents. Let's do so:

UPDATE ITEM SET ilnitial =
'LINESLEFT->BOOLEAN->SKIP->STOP->RETURN’
WHERE iID = 9926;

-- [test and fix the above]

UPDATE ITEM SET iResponse =
'ROLLMENU->Alert(No more!)->&ManyBack(PATIENT)’
WHERE iID = 9926;

UPDATE ITEM SET iResponse
WHERE iID = 9925;

UPDATE ITEM SET iResponse

WHERE iID = 9927,

'MENU(1)’

'"MENU(ADMIT)’

-- THE FOLLOWING IS STRICTLY FOR DEBUGGING!
UPDATE ITEM SET ilnitial = ”
WHERE iID = 9927;

A particularly important initialisation is the following:

UPDATE ITEM SET ilnitial = '&GetBadobs4Ward’
WHERE ilD = 1240;

We initialise the polymorphic table (1240) with bed observations peculiar to
current patients in this ward. The relevant routiGe{Badobs4Waids described
below.

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT Person FROM BADOBS WHERE badobs
WHERE iID = 9920;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT Person FROM BADOBS WHERE badobs
WHERE iID =9921;

-- must also create new epoch!

$[])->&FetchSurname’

$[])->&FetchidNumber’

5 MENUS FOR THE ANALGESIA DATABASE 42

UPDATE ITEM SET iResponse =
'V->QUERY(SELECT Person FROM BADOBS WHERE badobs = $[])->COPY->SETX->
CACHE(PROCESS.Person.$[])->
CACHE(PROCESS:"EPOCH.Process)->MENU(INTRO)’
WHERE ilD = 9921;

UPDATE ITEM SET ilnitial = 'V->&GetAlert’
WHERE iID = 9923;
UPDATE ITEM SET ilnitial

WHERE iID =9922;
UPDATE ITEM SET iResponse =

'V->QUERY(SELECT Person FROM BADOBS WHERE badobs = $[])->&SetNewRoom’

WHERE iID = 9922;

'V->&GetPatientRoom’

Already we're getting used to the scripting — From the previous menu, we
understand wha¥ means, and we can see that a lot of the scripting is simply
invocation of variousoutines. As for a monomorphic table, we can use a script
to initialise values of elements.

Here’s a recently introduced curve ball ManyBacK. This routine repeatedly
pops menu data using POPMENU.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (243,
'NAME(mnu)->NAME(stkmenu)->NAME(xval)->

SET(mnu)->
REPEAT(&ManySub)->
$[xval]->SETX->$[stkmenu]->MENU’,

'ManyBack’);

We repeatedly pop menus until onet identical to the submitted name is
encountered. At this point we push this menu name back to the stack and reload
the menu!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (244,
'POPMENU(#0)->SET(stkmenu)->SET(xval)->
$[mnu]->$[stkmenu]->SAME->
SKIP->STOP->RETURN’,

'ManySub’);

The EnterDetailMenu routine merits careful scrutiny. It accepts the patient
ID in the transfer variable X. First it finds the general observation process for that
patient® and creates aewepoch for that process. Finally, the routine enters the
DETAILS menu.

43Which must exist, as the patient has been admitted

5 MENUS FOR THE ANALGESIA DATABASE 43

A recent test(4/2007) is the introduction of SQL caching while dealing with
a particular patient. We used to submit the patient ID to the CACHE function in
this routine, but have now moved it out to MENU 970 (INTRO).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (162,
o>
QUERY(SELECT PROCESS.process FROM PROCESS
WHERE PROCESS.Person = $[] AND
PROCESS.ProcType = 1 AND
PROCESS.rEnd IS NULL)->
QOK->SKIP->=ReadmitPatient->
BURY->
KEY (Epoch)->NOW->ME->DIGUP->
DOSQL(INSERT INTO EPOCH(epoch,o0Made,Person,Process)
VALUES($[], TIMESTAMP "$[]”,$[1,$[1))->
MENU(DETAILS)’,

'EnterDetailMenu’);

If we cannot find an active type 1 process then the patient isn’t currently ad-
mitted** and we first have to readmit them! This routine is discussekeinfmit-
Patient.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (239,
"CONFIRM(Re-admit patient?)->SKIP->MENU(0)->
#3->&ProcAndEpoch->BURY->
"Badobs"->KEY->
$[ward]->#10000->MUL->
DIGUP->X->
COPY->
DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
DOSQL(INSERT INTO BADOBS(badobs,Bed,Epoch,Person,boFlag)
VALUES($[].$[,$0.$,0))->
#1->&ProcAndEpoch->
$[id]->SetX->
MENU(DETAILS)’,
'ReadmitPatient’);

In the above, which can only be invoked from the INTRO menu, X is the
patient in question. The SetX is for the invocation of ReadmitPatient within a
ward menu.

The precautionary UPDATE BADOBS might be unnecessary if by default
when we discharge a patient, we set this flag anyway!

#Technically, foradmissiorwe should look for the type 3 process. [CHECK THIS]

5 MENUS FOR THE ANALGESIA DATABASE 44

Given the patient ID, we create admission processes in a similar fashion to the
initial admission processreateAdmission. \We also make a generic observation
and a BED observation before moving to the DETAILS menu.

There are several catches: firstly, we might have no current ward, and secondly
the clumsy functionProcAndEpoch also requires the local variahilg to contain
the patient ID.

We've already addressed the need for $[id], and the invoking menu ultimately
always specifies a value for $ward, even if this is only 1 to represent ‘ward un-
known’. Associated with this is a room coded as 100 and a generic BED coded as
10000, which we use hefé.

5.2.1 Selection routines

We still need to examine the scripts themselves — no mean task — so let’s look
at them one by one. For notational convenience, we will separate out the body of
the routine, as in the following example.

INSERT INTO FUN (fKey, fBody, fName)VALUES(100,

'X->MUL(#10000)->ADD(#10000)->
X->MUL(#10000)->SUB(#1)->
QMANY(SELECT badobs FROM BADOBS WHERE
cold IS NULL AND
bolnactive IS NULL
AND Bed < $[] AND Bed > $[]] ORDER BY Bed)->
QOK->SKIP->STOP->RETURN’,

'‘GetBadobs4Ward’);

Given the ward ID as X, we find all patients for this ward. Instead of returning
patient IDs, we sneakily return they of the actual observation, which is more
useful overall! We work through the following sequence:

1. Create minimum and maximum BED IDs from the ward ID. To do so, mul-
tiply by 10000, copy, and either subtract 1 or add 10600.

2. Get active beds for this ward from the ugly BADOBS table. Active beds are
fairly complex in that there are two possible flaggd andbolnactive*’

45As GetPatientWard still works in obtaining the most recent ward occupied by a patient, the
alternative to allocating an unknown ward is to use this ward, but we'd rather not.

46This relies on our convention that the fixed ID of a BED is a number multiplied by 10 000,
that of a room is multiplied by 100, and a ward is simply a number from 1-100.

4'This is largely legacy stuff, as all we neectisid but we initially designed in bolnactive. We

5 MENUS FOR THE ANALGESIA DATABASE 45

Retrieve

INSERT INTO FUN (fKey, fBody, fName)VALUES(102,
'DIGUP->COPY->#0->SAME->SKIP->RETURN->DISCARD->STOP’,
'Retrieve’);

[dig up value, if not zero, return, otherwise skip, discard zero value and stop]
[THIS FX IS LIKEWISE CRAP AND WE SHOULD FIX UP ERROR HAN-
DLING TO FORCE 'STOP’] [THEN CAN GET RID OF COMPLEX COMPAR-
ISON] [AT PRESENT WE ONLY STOP IF ZERO DUG UP IE AT BOTTOM OF
DIGUP] HMM ONE WAY OF DOING THIS WHICH MAKES SOME SENSE
IS FOR URZN TO FORCE A STOP CONDITION!!

Every time we invokeRetrieve, we dig up a value out of storage (previously
stored there using BURY), until there’s nothing more, at which point REPEAT
fails.

Next, let’s look at retrieval of various column values in our polymorphic table
— surname, patient ID number, room, and whether the patient is for 'PM review’.

FetchSurname
INSERT INTO FUN (fkey, fBody, fName)VALUES(103,

'QMANY(SELECT MAX(PERSDATA.persdata) FROM PERSDATA
WHERE PERSDATA.pdoPerson = $[])->

QUERY(SELECT PERSDATA.pdoSurname FROM PERSDATA
WHERE PERSDATA.persdata = $[]),

'FetchSurname’);

The script is clumsy but self-explanatory: first, get the most recent personal
data epoch containing a non-null value for the surname, then retrieve this value.
Retrieval of the ID number is almost identical:

FetchIdNumber
INSERT INTO FUN (fKey, fBody, fName)VALUES(104,

'QMANY(SELECT MAX(PERSDATA.persdata) FROM PERSDATA
WHERE PERSDATA.pdoPerson = $[])->
QOK->SKIP->RETURN(?)->

QUERY(SELECT PERSDATA.pdoHospNo FROM PERSDATA

might profitably remove bolnactive completely, provided we don’t want to provide a history of
bed movements on the PDA, as any cold item will not be moved back to the PDA. | think it's best
to allow this functionality, so have left bolnactive in.

5 MENUS FOR THE ANALGESIA DATABASE 46

WHERE PERSDATA.persdata = 3[]),

'FetchldNumber’);

So similar, in fact that we don't need to explain the script! Let's rather look at
retrieving the current room for the patient:

GetPatientRoom

Given the record key in BADOBS, trivially pull out the room.
INSERT INTO FUN (fKey, fBody, fName)VALUES(106,

'QUERY(SELECT Bed FROM BADOBS WHERE badobs = $[J)->
QOK->SKIP->RETURN(?)->
#100->DIV->INTEGER->

QUERY(SELECT ROOM.srmText FROM ROOM

WHERE ROOM.room = $[J),

'GetPatientRoom’);

There is another routine we have to examine in relation to the room number.
If the useraltersthe room, then we will have to respond by updating the database.

SetNewRoom

Here we submit the ID of the patient on the stack, with the ID of the room below
this. We copy the patient ID and bury the copy. First we find the relevant admis-
sion process (code 3) and create a new epoch on this (INSERT INTO EPOCH..).
We then bury the ID of the epocéind the room ID, create a new key for

BADOBS, and in sequence dig up the room ID which we multiply by 100, epoch,
and the patient ID! We can now populate a BEDOBS row. We multiply by 100
to obtain a generic BED ID for that room, as at present we aren’t coding at BED
level!

INSERT INTO FUN (fKey, fBody, fName)VALUES(107,

'COPY->
BURY->
QUERY(SELECT PROCESS.process FROM PROCESS
WHERE PROCESS.Person = $[]
AND PROCESS.ProcType = 3
AND PROCESS.rEnd IS NULL)->
QOK->SKIP->=Fail(Not admitted!)->
BURY->KEY(Epoch)->COPY->NOW->ME->DIGUP->

5 MENUS FOR THE ANALGESIA DATABASE 47

DOSQL(INSERT INTO EPOCH(epoch,oMade,Person,Process)
VALUES($[], TIMESTAMP "$[]”,$[],$[]))->
BURY->
BURY->
KEY(Badobs)->#100->DIGUP->MUL->DIGUP->DIGUP->
COPY->COPY->BURY->
QUERY(SELECT boFlag FROM BADOBS WHERE bolnactive IS NULL AND
Person = $[])->
DIGUP->
DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
DOSQL(INSERT INTO BADOBS(badobs,Bed,Epoch,Person,boFlag)
VALUES($[],$[1.$[1.$[1.$(1))",
'SetNewRoom’);

Until 2007-11-13 the above routine did not preserve boFlag, which was irri-
tating. We now do.

The UPDATE BADOBS statement allows us to keep just one active BED
record, which simplifies searches immensely.

Finally, let’s find out how we detect whether evening observation is required
for a patient.

GetPmFlag
INSERT INTO FUN (fKey, fBody, fName)VALUES(108,

'"QUERY(SELECT PROCESS.process FROM PROCESS
WHERE PROCESS.Person = $[]
AND PROCESS.ProcType = 1100
AND PROCESS.rEnd IS NULL)->
QOK->SKIP->RETURN(#0)->RETURN",
'‘GetPmFlag);

We have a separate 'evening observation process’. In the above, we check for
the existence of such a non-terminated process for this patient. If the SQL fails,
we return zero (already on the stack); otherwise we swop the top two items on the
stack, then discard the top one, and return the (nonzero) process code.

5 MENUS FOR THE ANALGESIA DATABASE 48

5.3 Patient admission (905)

Figure 3: Patient admission menu

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (905, 20, 'Patient admission’, 'ADMIT’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (5, 905, 905, 0,
0.001, 0.001, 0.990, 0.990, 0);

The admission menu (ID 905) is reasonably straightforward, but is compli-
cated by the necessity to record several data iteefigsreadmission. There are
several ways we might do this, but we choose to allocate local variables to each
datum, and then, when we admit, we pull data items out of the local varidbles.

The local variables are:

e Surname

e forename

hospitalnumber

sex (gender)

ASA rating and ASA E rating

Here’s the simple script to create the temporary variables. By convention, we
don't have to initialise them to null, as this is automatically performed.

48Better than temporarily writing to the database, and then rolling back if we cancel!

5 MENUS FOR THE ANALGESIA DATABASE 49

UPDATE ITEM SET ilnitial = 'NAME(surname)->
NAME(forename)->NAME (hospitalnumber)->
NAME(sex)->NAME(ASA)->NAME(ASAe)->NAME(wt)->
NAME (dob)->
NAME (ward)->X->SET(ward)->
NAME(EpL)->
NAME(id)’ WHERE ilD = 905;

Here’s the population of the menu with various items: the abort button (code
80), surname (code 82), forename (84), hospital number (NHI, code 86), gender
(two pushbuttons, codes 87 and 88), ASA rating (codes 90-94), and ASA E score
(code 95). The variable ‘id’ isn’t used immediately, but is used when we actually
record the patient admission in the database!

At present we do not check for existence of a duplicate NHI, but we should do
so to prevent duplicate entries!

In the above we've also added a $ward variable. This is of general utility, and
allows invoked routines to be independent of their former need to use X as the
ward ID.

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (80, 2, ‘’Abort’, ‘’Abrt, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (106, 905, 80, 23,
0.070, 0.900, 0.200, 0.08, 6, 'red’, 'white”);
UPDATE ITEM SET iResponse = 'MENU(1)’ WHERE iID = 80;

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (81, 1, ’'Surname: ’, ‘asur’, ”, 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (107, 905, 81, 2,
0.050, 0.150, 0.200, 0.08, 0);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (82, 10, ", ’'SurTxt, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (108, 905, 82, 3,
0.350, 0.150, 0.500, 0.08, 0);
UPDATE ITEM SET iResponse = '&FixSQL->SET(surname) WHERE ilID = 82;

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (83, 1, ’'Forename: ’, 'Ptlst, ", 1);

5 MENUS FOR THE ANALGESIA DATABASE

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (109, 905, 83, 4,
0.050, 0.250, 0.200, 0.08, 0);
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (84, 10, ", ’'Txtlst, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (110, 905, 84, 5,
0.350, 0.250, 0.500, 0.08, 0);

50

UPDATE ITEM SET iResponse = '&FixSQL->SET(forename)’ WHERE iID = 84;

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (85, 1, ’'NHI: ', ’'HNo’, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (111, 905, 85, 1,
0.050, 0.050, 0.100, 0.08, 0);
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (86, 10, ", ’'TxNhi, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (112, 905, 86, 2,
0.350, 0.050, 0.400, 0.08, 0);

We also add optional information: the weight and birth date:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (98, 1, ’'Optional: Weight (kg)’, ‘witi’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (98, 905, 98, 17,
0.05, 0.550, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (99, 14, ", ‘'wtx, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (99, 905, 99, 17,
0.69, 0.550, 0.18, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (198, 1, 'Birth date:, ‘wti’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

5 MENUS FOR THE ANALGESIA DATABASE 51

VALUES (198, 905, 198, 19,
0.25, 0.650, 0.25, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (199, 10, ", ’dob’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (199, 905, 199, 20,
0.54, 0.650, 0.33, 0.08, 0);
-- we don’'t use date picker here as is clumsy

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (197, 1, ’(yyyy-mm-dd), ‘wti’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (197, 905, 197, 21,
0.53, 0.73, 0.33, 0.07, 0);

Here’s the routine to validate and set the weight value:

UPDATE ITEM SET iResponse =
'FLOAT->COPY->ISNULL->NOT->SKIP->=FailAndReload(Not a number)->
FLOAT(1000)->MUL->INTEGER->
SET(wt)’

WHERE iID = 99;

For now, we read the number as a float, multiply by 1000 and then convert to
an integer weight in grams. For the date of birth we need

UPDATE ITEM SET iResponse =
‘&Kiwidate->
COPY->&ValiDate->SKIP->=Fail(Invalid Date: $[])->SET(dob)’
WHERE iID = 199;

We introduce a small routine to turn around a New Zealand style date (DD-
MM-YYYY) into an international one (YYYY-MM-DD). It has two subsidiary
routines, and returns NULL on failure, otherwise a formatted date. It even allows
single digit day and month, but the year must be 4 digits.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (282,
'MARK(#1)->
SPLIT(-)->
DEPTH->SAME(#3)->SKIP->SPLIT(/)->
DEPTH->SAME(#3)->SKIP->=IsBad->
COPY->LENGTH->SAME(#4)->NOT->SKIP->=ReverseDate->

5 MENUS FOR THE ANALGESIA DATABASE 52

COPY->LENGTH->GREATER(#1)->SKIP->"0$[]"->BURY->
COPY->LENGTH->GREATER(#1)->SKIP->"0$[]"->BURY->
COPY->LENGTH->SAME(#4)->SKIP->=IsBad->BURY->
UNMARK->DIGUP->DIGUP->DIGUP->"$[]-$[]-$[]",
'Kiwidate’);

INSERT INTO FUN (fKey, fBody, fName)

VALUES (283,
'SWOP->BURY->SWOP->DIGUP->SWOP->
COPY->LENGTH->SAME(#4)->NOT->SKIP->=|sBad->
"$[]-$[]-$[]"->BURY->UNMARK->DIGUP->&Kiwidate’,

'ReverseDate’);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (284,
'UNMARK->NULL’,

'IsBad’);

Here’s the date validation routine. We utilise the fact that if we convert a date
to and from a Julian date using FLOAT, the value should be the same!

INSERT INTO FUN (fKey, fBody, fName)VALUES(263,
"TIMESTAMP->
COPY->ISNULL->NOT->SKIP->RETURN->
COPY->
FLOAT->TIMESTAMP->SAME’,

'ValiDate’);

In the above we should probably trim spaces at the start and the end of the date,
as otherwise some user will become unhappy sometime.We perform the initial
TIMESTAMP to allow for either a date or a timestarfip.

The hospital number is a little more complex, as we have to check that no
existing patient on the PDA has this ‘NHI’:

UPDATE ITEM SET iResponse =
'NULL->SET(hospitalnumber)->
COPY->&Go00odNhi->BOOLEAN->SKIP->=Fail(Invalid NHI)->
UPPERCASE->COPY->SET(hospitalnumber)->
QUERY(SELECT PERSDATA.pdoPerson FROM PERSDATA
WHERE PERSDATA.pdoHospNo = "$[]")->
QOK->SKIP->RETURN->
COPY->SET(id)->
QUERY(SELECT BADOBS.Bed
FROM BADOBS WHERE BADOBS.Person = $[] AND BADOBS.bolnactive IS NULL

49The TIMESTAMP function will convert a date to a full timestamp, but leave a timestamp
unaltered.

5 MENUS FOR THE ANALGESIA DATABASE 53

AND BADOBS.cold IS NOT NULL)->
QOK->SKIP->=ReadmitPatient->
#10000->DIV->INTEGER->
QUERY(SELECT WARD.swrdText FROM WARD

WHERE WARD.ward = $[])->

Alert(Patient is in Ward $[]!)->
POPMENU(#0)->DISCARD->DISCARD->MENU(0)’
WHERE iID = 86;

In the above we have stolen the ‘QUERY(SELECT BADOBS.Bed’ code from
GetMyWard. Formerly we simply entered the patient menu, but owing to the
Palm PDA's odd handling of eventshere is the potential to crash horribly if we
enter an existing NHI and then click on [Admit]! So we now display the ward,

and nothing more.
If the NHI is not found, we return with the NHI ihospitalnumber . The

code is similar to that for theearch buttoicode.
Here’s a routine to validate a New Zealand NHI (3 letters followed by 4 num-

bers)>!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (285,

'MARK (#1)->
COPY->LENGTH->SAME(#7)->SKIP->=IsBad->
UPPERCASE->""->SPLIT->
&IsNumb->SKIP->=IsBad->
&IsNumb->SKIP->=IsBad->
&IsNumb->SKIP->=IsBad->
&IsNumb->SKIP->=IsBad->
&lsAlpha->SKIP->=IsBad->
&IsAlpha->SKIP->=IsBad->
&lsAlpha->SKIP->=IsBad->
UNMARK->#1",
'GoodNhi");

IsNumb accepts a numeric string of 1 character, and returns #1 or NULL.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (2886,
'COPY->Greater(/)->SKIP->RETURN(#0)->LESS()’,

'IsNumb”);

IsAlpha is similar to IsNumb but checks for an uppercase alpha.

500, at least, our use of this handling!
Slwe really must write those regex routines!

5 MENUS FOR THE ANALGESIA DATABASE 54

INSERT INTO FUN (fKey, fBody, fName)
VALUES (287,
'COPY->GREATER(@)->SKIP->RETURN(#0)->LESS(])’,
'IsAlpha’);

The POPMENU instruction removes the ‘Admit’ menu from the menu stack;
we also must set the $id variable, and clumsily set X, the standard transfer variable
between menus, to the internal patient ID. The $ward variable (us&ditnit-
‘Patient) has already been set in the menu containing the button with ID 86.

Gender buttons:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)

VALUES (87, 4, 'F, ’'Female’, ", 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (88, 4, 'M’, ’'Male’, ”, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (114, 905, 87, 8,
0.250, 0.350, 0.100, 0.08, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (115, 905, 88, 9,
0.350, 0.350, 0.100, 0.08, 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (97, 1, ’'Sex, 'MfLbl’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (116, 905, 97, 7,
0.050, 0.350, 0.100, 0.08, 0);
--- Pushbuttons for gender M|F
UPDATE ITEM SET iResponse = 'DISCARD->#2->SET(sex)’
WHERE iID = 88;
UPDATE ITEM SET iResponse
WHERE iID = 87,

'DISCARD->#1->SET(sex)’

ASA scoring:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (89, 1, ’'ASA’, 'ASA score', ", 1);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (90, 4, '1', 'ASAl, ", 1)

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (91, 4, '2', 'ASA2, ", 1),

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (92, 4, '3, 'ASA3, ", 1)

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)

5 MENUS FOR THE ANALGESIA DATABASE

VALUES (93, 4, 4, 'ASA4, ", 1)
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (94, 4, '5, 'ASA%, ", 1)

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (117, 905, 89, 10,
0.050, 0.450, 0.050, 0.08, 0);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (118, 905, 90, 11,
0.250, 0.450, 0.100, 0.08, 2);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (119, 905, 91, 12,
0.350, 0.450, 0.100, 0.08, 2);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (120, 905, 92, 13,
0.450, 0.450, 0.100, 0.08, 2);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (121, 905, 93, 14,
0.550, 0.450, 0.100, 0.08, 2);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (122, 905, 94, 15,
0.650, 0.450, 0.100, 0.08, 2);

--- code for ASA 1.5 is 16, for ASA E is 15.

UPDATE ITEM SET iResponse = 'DISCARD->#1->SET(ASA)’
WHERE iID = 90;

UPDATE ITEM SET iResponse
WHERE iID = 91,

UPDATE ITEM SET iResponse
WHERE iID = 92;

UPDATE ITEM SET iResponse
WHERE iID = 93;

UPDATE ITEM SET iResponse
WHERE iID = 94;

'DISCARD->#2->SET(ASA)’

'DISCARD->#3->SET(ASA)’

'DISCARD->#4->SET(ASA)’

'DISCARD->#5->SET(ASA)’

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (96, 1, 'E', 'ASAE’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

VALUES (123, 905, 96, 16,

0.770, 0.450, 0.04, 0.08, 9);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (95, 3, '0, ‘'Asak’, ”, 1);

55

5 MENUS FOR THE ANALGESIA DATABASE 56

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (124, 905, 95, 16,
0.830, 0.450, 0.100, 0.08, 0);
UPDATE ITEM SET iResponse = 'SET(ASAe) WHERE ilD = 95;

Now, actual patient ‘admission’ (Admit button code is 100).

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (100, 2, 'Admit, ‘AdmBut, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (125, 905, 100, 25,
0.720, 0.900, 0.200, 0.08, 5, 'green’, 'white’);

Here’s the admission routine. If we fail, we give an alert message, otherwise
we move to the INTRO menu. The value in [id] is set to the person’s new ID by
AdmitPatient (called by DoWholeAdmission).

UPDATE ITEM SET iResponse =
'$[hospitalnumber]->QUERY(SELECT PERSDATA.pdoPerson FROM PERSDATA
WHERE PERSDATA.pdoHospNo = "$[]")->
QOK->NOT->SKIP->=FailAndReload(Duplicate patient!)->
&DoWholeAdmission->SKIP->
=Fail(At least enter sex, hospital number and surname!)->
$[id]->CACHE(PROCESS.Person.$[])->
CACHE(PROCESS:"EPOCH.Process)->MENU(INTRO)’
WHERE iID = 100;

If the hospital number exists, then we use the first 3 lines to detect this and
simply fail! (The code is from the response to ITEM 86).

Now let's explore the admission processDaWholeAdmission. In the fol-
lowing, AdmitPatient creates the necessary processes and epoch, returning the
ID of the epoch on the stack; we then simply attach data to this last epbth.
mitPatient calls CreateAdmission which will only work if the variable $ward is
correctly populated. AdmitPatient requires the variable [id], setting the person to
this value.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (109,
'#0->$[surname]->ISNULL->NOT->SKIP->RETURN->
$[sex]->ISNULL->NOT->SKIP->RETURN->
$[hospitalnumber]->ISNULL->NOT->SKIP->RETURN->DISCARD->
&AdmitPatient->
COPY->SET(EpL)->

5 MENUS FOR THE ANALGESIA DATABASE 57

copy->&KeepPersonData->
copy->$[ASA]->#2->&RecordASA->
$[ASAe]->#1->&RecordASA->
&RecordWeight->
&RecordDob->
#0->POPMENU->DISCARD->DISCARD->
#1',

'DoWholeAdmission’);

For now, we just admit. At the end we pop the current (admission menu), dis-
carding the associated X value and menu name. This is acceptable, as on returning
from DoWholeAdmission, we enter the patient data menu without further ado.

We must replace the first two lines with a validation rtn. [FIX ME!] As
already mentioned, we return zero (the initial #0) if we fail, otherwise 1. Once
we've invoked AdmitPatient, we record observation details for the new patient.
Let’s look at the routines in turn.

The simpleRecordWeight function takes the values in EpL and wt and asso-
ciates them in the MEASURE table.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (252,
'$[wt]->ISNULL->NOT->SKIP->RETURN->
KEY(Measure)->$[EpL]->$[wt]->
DOSQL(INSERT INTO MEASURE(measure,Epoch,meWt)VALUES(S[],$[1,$01))’
'RecordWeight’);

If the weight variable is null, then nothing is done, otherwise the weight is
recorded as an observation using the ‘current epoch’ value in $EpL, which must
be pre-set.

Although we only use it later, let’s here examiftetchWeight.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (253,
'X->QUERY(SELECT MEASURE.meWt FROM MEASURE,EPOCH,PROCESS
WHERE MEASURE.Epoch = EPOCH.epoch AND
EPOCH.Process = PROCESS.process AND
PROCESS.Person = $[])->QOK->SKIP->RETURN(?)->
DIV(#1000)’,
'FetchWeight');

This routine assumes that X is the ID of the current patient, and obtains the
weight (if present) from the MEASURE table using a join on EPOCH and PRO-
CESS. We convert from grams to the nearest kilogram.

RecordDob is a recent function which does just that. Knowing the value in
$id, we examine the $dob variable and update the relevant PERSON table entry if
required:

5 MENUS FOR THE ANALGESIA DATABASE 58

INSERT INTO FUN (fKey, fBody, fName)
VALUES (2686,
'$[dob]->ISNULL->NOT->SKIP->RETURN->
$[dob]->TIMESTAMP->$[id]->
DOSQL(UPDATE PERSON SET pBorn=TIMESTAMP "$[]" WHERE person = 3[])’,
'RecordDob);

In the above we first convert a date to a timestamp using the TIMESTAMP
command. We use DOB to determine the age of a person, given X as the ID of
that person:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (267,
X->
QUERY(SELECT pBorn FROM PERSON WHERE person = $[J)->
COPY->ISNULL->NOT->SKIP->RETURN->
TIMESTAMP->FLOAT->NOW->FLOAT->SWOP->SUB->
FLOAT(365.25)->DIV->INTEGER,

'FetchAge’);

The above fetches the age (returning null if the age is dud), otherwise convert-
ing the DOB sequentially to a timestamp and then a float, subtracting the current
timestamp (NOW) and then dividing by 365.25 to get years.

AdmitPatient assumes that $ward is the current ward. She creates a new
person ID (unique, and local to this PDA), populating the ‘id’ local variable with
this value. In addition, the X value for threextmenu is set to this ID.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (110, ™Person"->KEY->SET(id)->
$[id]->setX->
$[id]->now->
DOSQL(INSERT INTO PERSON(person,pMade,pStatus)
VALUES($[], TIMESTAMP "$[]",1))->
&CreateAdmission’,

'‘AdmitPatient’);

After inserting the person into the PERSON talsleze move on to create the
admission process itself, for that person. Let's exantinaiteAdmission. Here
we perform three main actions:

1. Create an admission process itself (typ&®3)jth an attached epoch;

524 status value of 1 indicates a patient.
53See Table 2 in the preceding document ie. Part I.

5 MENUS FOR THE ANALGESIA DATABASE 59

2. Create a BED observation, using tberrent value in X, which describes
the ward. We admit to a generic bed for that ward. The BED observation is
attached to the observation (EPOCH) of #missiorprocess, which key
was returned on the stack BrocAndEpoch;

3. Create an observation process (type 1, distinct from the admission one), and
return the associated key of the EPOCH on the stack!

We must return the key of thabservation processreated during this routine.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (111,
'#3->&ProcAndEpoch->BURY->
"Badobs"->KEY->$[ward]->#10000->MUL->DIGUP->$[id]->
COPY->
DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
DOSQL(INSERT INTO BADOBS(badobs,Bed,Epoch,Person,boFlag)
VALUES($[].$[].$[.$[1,0))->
#1->&ProcAndEpoch’,
'‘CreateAdmission’);

We bury the EPOCH, and then create a BED observation on it. We generate
the generic BED from X (the current ward id) multiplied by 10000, that is times
100 for the room and 100 for the BED. As usual, we ensure that there is only one
active BED for this patient within BADOBS by invoking the UPDATE BADOBS
statement.

Here’s theProcAndEpoch routine. Given values in the local variable ‘id’ (for
the patient) we create a new process and an observation on that process! The type
of process is specified as an integer argument on the stack. The roeftines
the ID of the createdpochon the stack.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (112,
'COPY->$[id]->DOSQL(UPDATE PROCESS SET cold=3 WHERE ProcType = $[] AND Person =
BURY->"Process"->KEY->copy->$[id]->now->now->me->DIGUP->
DOSQL(INSERT INTO PROCESS
(process,Person,rStart,rCreated,rPlanner,ProcType)
VALUES(S$[],$[], TIMESTAMP "$[]”, TIMESTAMP "$[1",$[1,%[]))->
"Epoch"->KEY->copy->BURY->SWOP->now->me->
DOSQL(INSERT INTO EPOCH(epoch,Process,oMade,Person)
VALUES($[],$[], TIMESTAMP "$[]”,$[]))->DIGUP’,

'ProcAndEpoch’);

Here we record personal (admission) data. We submit the process epoch on
the stack:

5 MENUS FOR THE ANALGESIA DATABASE 60

INSERT INTO FUN (fKey, fBody, fName)
VALUES (113,

'BURY->

"Persdata"->KEY->DIGUP->
$[surname]->$[forename]->$[hospitalnumber]->
$[sex]->$[id]->

DOSQL(INSERT INTO PERSDATA(persdata,Epoch,
pdoSurname,pdoForename,pdoHospNo,
pdoGender,pdoPerson)
VALUES($[1,$[1,"$[1","$0","$0",$.$00))",
'KeepPersonData);

We use our knowledge that $[id] contains the local database ID number of the
person. Here’s the ASA rating function. On the top of the stack, we submit an
integer 2 if we're recording the ASA 1-5, or a 1 if we're recording the ‘E’ rating:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (114,
'#3->MARK->SWOP->URZN->SWOP->
"Medscore"->KEY->
DOSQL(INSERT INTO MEDSCORE(Epoch,msoValue,msoNature,medscore)
VALUES($],$[1.$(1.$0))->
UNMARK’,
'RecordASA);

The first line marks the stack, and then quits the routine without doing any-
thing if the ASA value is NULL (using URZN to test for this case). We have a
similar problem to that in KeepPersonData. The fix:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (114,
'#3->MARK->SWOP->URZN->SWOP->
BURY->BURY->BURY->
"Medscore"->KEY->
DIGUP->DIGUP->DIGUP->
DOSQL(INSERT INTO MEDSCORE(medscore,Epoch,msoValue,msoNature)
VALUES($[],%0,%[,$0))->
UNMARK’,
'RecordASAY);

5 MENUS FOR THE ANALGESIA DATABASE 61

5.4 Finding a patient (919)

Figure 4: Find a patient

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (919, 20, ’'ldentify patient(s)’, 'SEARCH);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (919, 919, 919, 0,
0.001, 0.001, 0.990, 0.990, 0);

UPDATE ITEM SET ilnitial =
'NAME(Surname)->NAME(NHI)->NAME(id)->
NAME(ward)->#1->SET(ward)’

WHERE iID = 919;

Because we may not necessarily know the ward even when we identify the
patient (as the patient may not have a ward, having been discharged) we set a
default ‘'unknown’ ward of one.

We use the ‘Exit’ button (similar to ‘Abort’ code 80). We create our own
Surname and Hospital Number fields.

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1210, 2, ’'Exit, 'x, ", 1)
UPDATE ITEM SET iResponse = 'MENU(1) WHERE ilID = 1210;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1210, 919, 1210, 1,
0.070, 0.900, 0.200, 0.08, 6, 'red’, 'white’);

INSERT INTO ITEM (ID, iType, iText, iName, iList, iLines)

5 MENUS FOR THE ANALGESIA DATABASE

VALUES (1200, 1, ‘’Surname: ’, ‘asur, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1200, 919, 1200, 2,
0.050, 0.62, 0.200, 0.08, 0);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1201, 10, 7, ’SurTxt, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1201, 919, 1201, 3,
0.350, 0.62, 0.500, 0.08, 0);
UPDATE ITEM SET iResponse = 'SET(Surname)’ WHERE iID = 1201,

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1202, 1, 'NHI: ', 'HNo, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1202, 919, 1202, 6,
0.050, 0.750, 0.100, 0.08, 0);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1203, 10, ", 'TxNhi’, 7, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1203, 919, 1203, 7,
0.350, 0.750, 0.400, 0.08, 0);
UPDATE ITEM SET iResponse = 'UPPERCASE->SET(NHI)
WHERE iID = 1203;
--- later should validate this

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1205, 2, ’'Search’, 'srch’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1205, 919, 1205, 10,
0.750, 0.900, 0.200, 0.08, O, 'green’, 'white");

Here’s the script for the search button.

UPDATE ITEM SET iResponse = '$[NHI]->
COPY->ISNULL->NOT->SKIP->=GoSurname->
QUERY(SELECT PERSDATA.pdoPerson FROM PERSDATA

WHERE PERSDATA.pdoHospNo = "$[]")->QOK->

SKIP->=Fail(Not found)->copy->SETX->

CACHE(PROCESS.Person.$[])->
CACHE(PROCESS:"EPOCH.Process)->MENU(INTROY’
WHERE iID = 1205;

5 MENUS FOR THE ANALGESIA DATABASE 63

Here’s GoSurname which, if the surname is filled in, tries to find matching
surnames. We must create the separate SURNAME menu (next section) to which
we pass the surname as X, and then in this new menu we will search, creating a
list of candidates similar to a ward list!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (235,
'$[Surname]->
COPY->ISNULL->NOT->SKIP->=Fail(Please enter Surname or NHI)->
QUERY(SELECT persdata FROM PERSDATA
WHERE pdoSurname = "$[]")->QOK->
SKIP->=Fail(No surname match!)->
SETX->MENU(SURNAME)’,
'‘GoSurname’);

The above tests foat least onepatient with this identical name, otherwise
failing miserably! See how, in keeping with our current convention that X can
only be a number, we return the PERSDATA id of josiesuch name.

5.4.1 Finding patients who haven’t been seen

A simple button invokes this function:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1206, 2, °'Flag unseen!’, 'fp’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1206, 919, 1206, 10,
0.30, 0.03, 0.400, 0.08, 0);

UPDATE ITEM SET iResponse = '&FlagRecent->Alert(Unseen flagged -!-)->MENU(1)’
WHERE iID = 1206;

5.4.2 Finding patients with recent ‘problems’

Another button:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1207, 2, ’'Flag problems!’, ‘fp’, 7, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1207, 919, 1207, 10,
0.30, 0.16, 0.400, 0.08, 0);

UPDATE ITEM SET iResponse = '&FlagProblem->Alert(Problems flagged -!-)->MENU(1)’
WHERE iID = 1207,

5 MENUS FOR THE ANALGESIA DATABASE 64

5.4.3 Find those marked for ‘PM review’
Again, almost identical:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1208, 2, 'For PM review!, ‘'fp’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1208, 919, 1208, 10,
0.30, 0.29, 0.400, 0.08, 0);

UPDATE ITEM SET iResponse = '&FlagPM->Alert(PM Flagged -!-)->MENU(1)’
WHERE iID = 1208;

We also need a reminder to ‘Exit’ and use the usual menu system:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1209, 1, ’(Exits to main menu once flagged), ‘'rem’, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1209, 919, 1209, 6,
0.050, 0.42, 0.900, 0.08, 0);

5.5 Selection from a list of surnames (918)

Figure 5: Selection from a list

Here’s the first draft ofearchBySurname:

We must create a separate menu to which we pass the PERSDATA surname
id as X, and then in this new menu we will search, creating a list of candidates
similar to a ward list!

It would be simple, quick and fun to search thus ...

5 MENUS FOR THE ANALGESIA DATABASE 65

INSERT INTO FUN (fKey, fBody, fName)
VALUES (236,
'X->QUERY(SELECT pdoSurname FROM PERSDATA
WHERE persdata = $[])->
QMANY(SELECT PERSDATA.pdoPerson FROM PERSDATA
WHERE PERSDATA.pdoSurname = "$[]"),
'SearchBySurname’);

... buuut we have a teensy problem: we will also include staff members in our
search! We therefore use the cumbersome join:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (236,
'X->QUERY(SELECT pdoSurname FROM PERSDATA
WHERE persdata = $[])->
QMANY(SELECT PERSDATA.pdoPerson FROM PERSDATA,EPOCH,PROCESS,PERSON
WHERE PERSDATA.pdoSurname = "$[]” AND
PERSDATA.Epoch = EPOCH.epoch AND
EPOCH.Process = PROCESS.process AND
PROCESS.Person = PERSON.person AND
PERSON.pStatus < 2),
'SearchBySurname’);

The search is still quick because the second SELECT balks before the first
AND if the surnames don’t match; if there is a match we track the joins to see
whether the person is a patient or not!

This menu isvery similar to the selection of a patient within a ward. Button
80 is the Abort button, and 1230 is a polymorphic table describing the patients.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (918, 20, 'Select on Surname’, 'SURNAME;

INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (1230,8,[Not found],’PtThblI’,10);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (1220, 918, 918, 0, 0.001, 0.001, 0.990, 0.990),
(1221, 918, 1230, 1, 0.001, 0.001, 0.999, 0.850),
(1223, 918, 80, 3, 0.200, 0.900, 0.200, 0.080);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1226, 1, ‘'w', 'Wd);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1227, 2, T, Id’),

5 MENUS FOR THE ANALGESIA DATABASE 66

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1228, 1, 'S’ 'Snx’);

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction, irEnabled)
VALUES (1226, 1230, 1226, 3, 'Ward’, 0.25, 1),
(1227, 1230, 1227, 2, 'ID, 0.30, 1),
(1228, 1230, 1228, 1, 'Surname’, 0.45, 1);

UPDATE ITEM SET ilnitial = 'V->&GetPatientWard’
WHERE iID =1226;

UPDATE ITEM SET ilnitial = '&SearchBySurname’
WHERE iID = 1230;

UPDATE ITEM SET ilnitial
WHERE iID =1227;

'V->&FetchldNumber’

UPDATE ITEM SET ilnitial
WHERE iID = 1228;

'V->&FetchSurname’

UPDATE ITEM SET iResponse = 'V->COPY->SETX->CACHE(PROCESS.Person.$[])->
CACHE(PROCESS:"EPOCH.Process)->MENU(INTROY’
WHERE D = 1227;

In setting up the SURNAME menu, we don’t know whether the patient will
have a ward, so we play it safe and create a ward of 1 (unknown)!

UPDATE ITEM SET ilnitial =
'NAME(id)->
NAME (ward)->#1->SET(ward)’
WHERE iID = 918;

The response button for the ID button (1227) is similar to that for item 21,
invoking EnterDetailMenu. V is the patient ID.
Here’s theGetPatientWard function, very similar toGetPatientRoom:

INSERT INTO FUN (fKey, fBody, fName)VALUES(237,

'QUERY(SELECT BADOBS.Bed FROM BADOBS
WHERE BADOBS.Person = $[] AND BADOBS.bolnactive IS NULL)->
QOK->SKIP->RETURN(?)->
#10000->DIV->INTEGER->
QUERY(SELECT WARD.swrdText FROM WARD
WHERE WARD.ward = $[]),

'GetPatientWard’);

5 MENUS FOR THE ANALGESIA DATABASE 67

5.6 Patient alert screen (903)

BLG9833 : Bloggs

ASAZE Wiikal39 Agelyr) 4é
w B5 Given: lames

MIAIGE PROBLEM S
renal heartd lung O liver O]
coagulopathy [0 CMS [
chronic pain - [chronic opiate:)

I [Cornments) [Mexct)

Figure 6: Patient alerts

This menu, with the arbitrary code 903, has an X (transfer variable) value set to
the unique ID of the current patient.

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (903, 20, 'Alerts’, 'DETAILS);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (4, 903, 903, 0,
0.001, 0.001, 0.990, 0.990, 0);

Here’s the initialisation of the DETAILS menu (903):

UPDATE ITEM SET ilnitial =
'X->&FetchldNumber->X->&FetchSurname->
X->&GetBed->
"$[[($[)"->Title->

NAME(EpL)->#1->X->&LastEpoch->SET(EpL)’

WHERE iID = 903;

Here's GetBed:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (297,
'QUERY(SELECT Bed FROM BADOBS WHERE Person = $[] AND bolnactive IS NULL)->DIV(#10
COPY->DIV(#100)->MUL(#100)->SUB->COPY->SAME(#0)->NOT->SKIP->REPLACE('?")’,
'GetBed);

Continuing ...

5 MENUS FOR THE ANALGESIA DATABASE 68

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (132, 2, ’'Not seen’, 'ns’, ”, 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (32, 903, 132, 1,
0.003, 0.910, 0.230, 0.08, 0);
-- back button

UPDATE ITEM SET iResponse =
"CONFIRM(Are you sure? [Data may be lost])->
SKIP->RETURN->
MENU(-1)’ WHERE iID = 132;

In the above we abort the edit and return to the previous menu, also turning
off caching. We formerly invoked EndEpoch, but this was wrong, as we should
notrecord the interval if the patient was ‘not seen’ as flagging will then fail!

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (133, 2, ’'Next’, ’'Continuation button’, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup, miPaper)
VALUES (33, 903, 133, 2,
0.820, 0.910, 0.160, 0.08, 0, ’green’);

Here’s the ‘Next button’ response.

UPDATE ITEM SET iResponse =
'X->&1524->BOOLEAN->SKIP->MENU(PAINDATA)->MENU(RGNCHECK)’
WHERE iID = 133;

We must look carefully at the above. If we access the PAINDATA menu
from elsewhere, we should similarly invoke RGNCHECK if 1s24 returns true.
At present this is the only access point.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (140, 1, ‘'renal’, 're’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (40, 903, 140, 3,
0.03, 0.080, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (144, 1, ’coagulopathy’, ’co’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (44, 903, 144, 3,
0.03, 0.160, 0.20, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE 69

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (142, 1, ‘’chronic pain’, ’cp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (42, 903, 142, 3,
0.03, 0.240, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (143, 1, ’lung, 'lu’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (43, 903, 143, 3,
0.55, 0.080, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (145, 1, ‘’chronic opiates’, ’ch’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (45, 903, 145, 3,
0.50, 0.240, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (146, 1, ‘’heart, ’hr’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (46, 903, 146, 3,
0.28, 0.080, 0.20, 0.08, 0);

INSERT INTO ITEM (ilID, iType, iText, iName)
VALUES (147, 1, ‘liver, 'lIi");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (47, 903, 147, 3,
0.80, 0.080, 0.20, 0.08, 0);

On request, we've also added the patient weight in over here; we also add a
‘CNS dysfunction’ tickbox.

In the following section we specify the ini scripts and responses for the various
tickboxes. The numbers specify the process IDs for the various problems, for
example #1050 is ‘coagulopathy’.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (149, 1, 'MAJOR DYSFUNCTION:, 'mp";
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

S4Consult the relevant tables AnalgesiaDBpart1l

5 MENUS FOR THE ANALGESIA DATABASE 70

miX, miY, miwW, miH, miGroup)
VALUES (49, 903, 149, 3,
0.03, 0.01, 0.50, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (150, 3, ", 're’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (50, 903, 150, 4,
0.16, 0.080, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1000->&WasItOn" WHERE iID = 150;
UPDATE ITEM SET iResponse = '#1000->SWOP->&0nOrOff WHERE ilD

150;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (156, 3, ", ‘’hr);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (56, 903, 156, 6,
0.42, 0.080, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1010->&WasltOn’ WHERE iID = 156;
UPDATE ITEM SET iResponse = '#1010->SWOP->&0nOrOff WHERE ilD

156;

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (153, 3, ", ’luY);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (53, 903, 153, 8,
0.68, 0.080, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1020->&WasItOn" WHERE iID = 1583;
UPDATE ITEM SET iResponse = '#1020->SWOP->&O0nOrOff WHERE ilD

153;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (157, 3, ", 'I");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (57, 903, 157, 10,
0.92, 0.080, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1030->&WasltOn’ WHERE iID = 157;
UPDATE ITEM SET iResponse = '#1030->SWOP->&0nOrOff WHERE ilD

157;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (154, 3, ", ’co’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (51, 903, 154, 12,
0.42, 0.160, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1050->&WasltOn’ WHERE iID = 154;
UPDATE ITEM SET iResponse = '#1050->SWOP->&0nOrOff WHERE ilD

154;

5 MENUS FOR THE ANALGESIA DATABASE 71

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (166, 1, 'CNS', ’cn’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (166, 903, 166, 14,
0.54, 0.160, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (165, 3, ", ’cns’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (165, 903, 165, 16,
0.68, 0.160, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1090->&WasltOn’ WHERE iID = 165;
UPDATE ITEM SET iResponse = '#1090->SWOP->&0nOrOff WHERE ilD

165;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (152, 3, ™, ’cp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (52, 903, 152, 18,
0.42, 0.240, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1060->&WasltOn’ WHERE iID = 152;
UPDATE ITEM SET iResponse = '#1060->SWOP->&0n0OrOff WHERE ilD

152;

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (155, 3, ", ‘’opi’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (55, 903, 155, 20,
0.92, 0.240, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1070->&WasltOn’ WHERE iID = 155;
UPDATE ITEM SET iResponse = '#1070->SWOP->&0nOrOff WHERE ilD

155;

In July 2008 we added diabetes and ‘neoplasia’ to our list, and adjusted the
positions of the items below, in consequence:

INSERT INTO PROCTYPE (proctype, rptNature)
VALUES (1075, ’diabetes’),
(1085, 'neoplasm’);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (148, 1, ‘'diabetes’, 'd’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (148, 903, 148, 3,

5 MENUS FOR THE ANALGESIA DATABASE 72

0.03, 0.320, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (167, 3, ", 'd);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (167, 903, 167, 20,
0.42, 0.320, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1075->&WasltOn’ WHERE iID = 167;
UPDATE ITEM SET iResponse = '#1075->SWOP->&0n0OrOff WHERE ilD = 167;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (151, 1, ‘’neoplasm’, 'n’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (151, 903, 151, 3,
0.50, 0.320, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (168, 3, ", 'n’;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (168, 903, 168, 20,
0.92, 0.320, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '#1075->&WasltOn’ WHERE iID = 168;
UPDATE ITEM SET iResponse = '#1075->SWOP->&0n0OrOff WHERE ilD = 168;

-- move SURGERY: text down a shade, as well as the associated menu (651):
UPDATE MENUITEMS SET miY = 0.40 WHERE miUid = 1149;

UPDATE MENUITEMS SET miY = 0.47 WHERE miUid

651,

We need to insert a list of operations:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1149, 1, 'SURGERY:, 'mp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1149, 903, 1149, 3,
0.03, 0.38, 0.36, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (650, 8, ’[No operation], ’'Cmnt, ”, 5);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)

5 MENUS FOR THE ANALGESIA DATABASE 73

VALUES (622, 1, -, 'Typl, ", 1)
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (621, 1, -, ’'Datl’, ", 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (624, 1, -, 'cl’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (651, 903, 650, 22,
0.001, 0.450, 0.999, 0.400, 1, 0);

-- group of 1 = ’clickable’

--INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
-- irName, irFraction)

- VALUES (654, 650, 623, 3,

- 'Op. Site’, 0.40);

--- site of surgery (disabled)

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction)
VALUES (652, 650, 621, 1,
'Date’, 0.24);
--- date of observation

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction)
VALUES (653, 650, 622, 2,
'Op. Type’, 0.34);
--- type of surgery

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction)
VALUES (655, 650, 624, 3,
'Note’, 0.42);
--- date of observation

Here’s the response to clicking on an operation name:

UPDATE ITEM SET iResponse =
'V->QUERY(SELECT COMMENT.cText FROM COMMENT
WHERE COMMENT.Epoch = $[])->Alert’
WHERE iID =624;

UPDATE ITEM SET ilnitial = 'X->QMANY(SELECT EPOCH.epoch
FROM EPOCH,PROCESS
WHERE EPOCH.Process = PROCESS.process AND
PROCESS.ProcType = 500 AND
PROCESS.Person = $[])’
WHERE iID = 650;

5 MENUS FOR THE ANALGESIA DATABASE 74

Finally we have the button to ‘add operations’:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (245, 2, 'Add operation’, 'AdCmt’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (245, 903, 245, 40,
0.52, 0.41, 0.44, 0.08, 0);
UPDATE ITEM SET iResponse = 'MENU(SURGERY)'" WHERE iID = 245;
-- Add operation button

5.6.1 LastEpoch

LastEpoch identifies the most recent epoch on the stated type of process for this
patient. The top item on the stack is the patient, and deep to this is the type of
process, e.g. 1 for a general observation process. The reasonable assumption is
made that this process has already been createdfBeeDetailMenu).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (163,

'"QMANY (SELECT MAX(EPOCH.epoch) FROM EPOCH,PROCESS
WHERE EPOCH.Process = PROCESS.process AND
PROCESS.ProcType = $[] AND
PROCESS.Person = $[] AND
PROCESS.rEnd IS NULL)->QOK->SKIP->#0->RETURN’,

‘LastEpoch’);

5.6.2 Patient ward: get and set

We must be able to obtain and change the patient’s current ward from within
the ‘Patient Alerts’ menu. The routines are respectivgbMyWard and Set-
NewWard.

INSERT INTO FUN (fKey, fBody, fName)VALUES(169,
"X->QUERY(SELECT BADOBS.Bed
FROM BADOBS WHERE BADOBS.Person = $[] AND BADOBS.bolnactive IS NULL)->
#10000->DIV->INTEGER->
COPY->SET(ward)->
QUERY(SELECT WARD.swrdText FROM WARD
WHERE WARD.ward = 3[])’,

'‘GetMyWard");

We have modifiedjetMyWard to store the ward ID in the [ward] variable, a
bit of a hack! This variable must now exist. The second INTEGER command is

5 MENUS FOR THE ANALGESIA DATABASE 75

a consequence of Perl’'s weak typing: on the desktop (without the command) we
start looking for a floating point value!

The next section sets a new ward (with an unknown BED) for the current
patient. Already on the stack is the ID of the ward and the patient (‘Person’ ID).
We first (after transiently burying the patient ID) confirm the move, and reload the
menu on failure. Note that reloading the menu will terminate the script, and clear
the buried datum. On success, we dig up the patient and continue.

Then, deepest of all, we bury a copy of the person ID. We then bury the ward
ID after multiplying by 10000 to convert the ward ID to a generic BED ID for that
ward! Using the ID of the patient we find the process with a type of 3 (admis-
sion process), create a new epoch for that process, and then make a ‘badobs’ to
document a ‘generic BED’ for that ward.

INSERT INTO FUN (fKey, fBody, fName)VALUES(170,
'BURY->
COPY->QUERY(SELECT swrdText FROM WARD WHERE ward = $[])->
CONFIRM(Move to Wd $[]?)->SKIP->MENU(#0)->
DIGUP->
COPY->BURY->
SWOP->#10000->MUL->BURY->
QUERY(SELECT PROCESS.process
FROM PROCESS WHERE PROCESS.Person = $]
AND PROCESS.ProcType = 3)->BURY->
KEY (Epoch)->COPY->NOW->ME->DIGUP->
DOSQL(INSERT INTO EPOCH(epoch,oMade,Person,Process)
VALUES($[], TIMESTAMP "$[]",$[].$[]))->
BURY->
KEY(Badobs)->DIGUP->DIGUP->DIGUP->
COPY->
DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
DOSQL(INSERT INTO BADOBS(badobs,Epoch,Bed,Person,boFlag)
VALUES($[],$[1.$[.$[0.1))’,
'SetNewWard);

We set boFlag to 1 by default, as after moving a patient around, we regard
them as ‘interesting’! See the two invocationsSetNewWard.

5.6.3 Obtaining patient data

We've previously defined oufetchASurname routine and we use it to good effect
over here. Very similar iFetchForename:

INSERT INTO FUN (fKey, fBody, fName)VALUES(154,

'QMANY(SELECT MAX(PERSDATA.persdata) FROM PERSDATA

5 MENUS FOR THE ANALGESIA DATABASE 76

WHERE PERSDATA.pdoPerson = $[])->
QUERY(SELECT PERSDATA.pdoForename FROM PERSDATA
WHERE PERSDATA.persdata = 3[]),

'FetchForename’);

Similar in some respects is fetching ASA data. Assuming X is the current pa-
tient, we submit the ‘medical code’ (here 1 or 2 for ASA/ASAe), and laboriously
retrieve the correct value. First tetchiMedscore routine:

INSERT INTO FUN (fKey, fBody, fName)VALUES(155,

X->
QMANY(SELECT MAX(MEDSCORE.medscore) FROM MEDSCORE,EPOCH,PROCESS
WHERE MEDSCORE.Epoch = EPOCH.epoch
AND MEDSCORE.msoNature = $[]
AND EPOCH.Process = PROCESS.process
AND PROCESS.Person = $[])->QOK->SKIP->RETURN(?)->
QUERY(SELECT MEDSCORE.msoValue FROM MEDSCORE
WHERE MEDSCORE.medscore = $[]),

'FetchMedscore’);

... and next the actual ASA retrieval:
INSERT INTO FUN (fKey, fBody, fName)VALUES(156,

'#2->&FetchMedscore->
#1->&FetchMedscore->
#1->SAME->NOT->SKIP->"$[]JE"->RETURN’,

'FetchASA);

First we fetch the ASA value in the range of 1-5, then the E score, coded as a
Ooral. Ifthe Evalueis 1 (i.e. ‘yes’) then only do we add an ‘E’ suffix.

5.6.4 Finding the most recent process

The routineFindRecentProcessis a useful, generic routine which takes the current
patient (as X) and, given a process code on the stack, returns the ID of the most
recent such process for that patient. (Of course the query fails and returns zero if
Nno such process exists).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (115, 'X->
QMANY(SELECT MAX(PROCESS.process) FROM PROCESS WHERE
PROCESS.ProcType = $[] AND PROCESS.Person = $]
AND PROCESS.rEnd IS NULL)’,
'FindRecentProcess’);

5 MENUS FOR THE ANALGESIA DATABASE 77

The process code (ProcType) is assumed to be on the stack, and X is placed
there. If the SELECT statement failed, we return zero, otherwise the result of the

query.

5.6.5 Checking active processes

The WasItOn routine is similar to the above. Given the same information, we
determine the rEnd value, returning 1 if it's null and otherwise returning zero!

Here we use this routine to find whether there are major problems such as renal
failure, as each process is modelled as a problem. If the process has terminated,
the termination timestamp is filled in, but otherwise the timestamp is null.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (116, 'X->
QMANY(SELECT PROCESS.process FROM PROCESS WHERE
PROCESS.rEnd IS NULL AND
PROCESS.ProcType = $[] AND PROCESS.Person = $[])->
QOK->SKIP->RETURN(#0)->
#1',
'WasItOn’);

If no process exists, return zero. If the process exists and the timestamp is null,
then only return 1.

Similar is the WasBetween routine, which identifies any single epoch which
is bothmore recenthan EpL (the ‘most recent general epoch’), and ometive
process between the two submitted codes! The first ProcType code submitted
must be smaller than the second.

The idea is that in the current epoch (which starts with EpL) we will have
observations on (active) processes only if the relevant menu has been visited.

How do we document, for example, that we've noted tiwagpidural is in? We
don’t want to create a virtual (non-epidural) process so this seems to fall logically
into the field of a general observation! Note that there can be conflict between
such an observation and an ongoing epidural process — this needs to be resolved!

INSERT INTO FUN (fKey, fBody, fName)

VALUES (173,

'BURY->BURY->$[EpL]->X->DIGUP->DIGUP->

QUERY(SELECT EPOCH.epoch FROM EPOCH,PROCESS WHERE
EPOCH.epoch > $[] AND
EPOCH.Process = PROCESS.process AND
PROCESS.rEnd IS NULL AND
PROCESS.Person = $[] AND
PROCESS.ProcType > $[] AND
PROCESS.ProcType < $[))->

5 MENUS FOR THE ANALGESIA DATABASE 78

QOK->SKIP->RETURN(#0)->
DISCARD->#-1",
'WasBetween’);

5.6.6 Ending a process

Given a process TYPE (ProcType), and the patient in X, terminate the process.
The following assumes that there is only one such active process (and will only
terminate the first such process it finds).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (117, 'X->
QUERY(SELECT PROCESS.process FROM PROCESS WHERE
PROCESS.ProcType = $[] AND PROCESS.Person = $[]
AND PROCESS.rEnd IS NULL)->
QOK->SKIP->RETURN->BURY->NOW->DIGUP->
DOSQL(UPDATE PROCESS SET rEnd=TIMESTAMP "$[]” WHERE process = $[]),
'EndProcByType’);

5.6.7 Creating a new process

NewProc is convenience function which creates a new processas¥amehat
X contains the ID of the patient, and that the type of process is on the stack. The
process ID is returned on the stack.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (118,
'BURY->KEY (Process)->copy->X->now->now->me->DIGUP->
DOSQL(INSERT INTO PROCESS
(process,Person,rStart,rCreated,rPlanner,ProcType)
VALUES($[],$[], TIMESTAMP "$[]", TIMESTAMP "$[]”,$[],$[1))",

'NewProc’);

5.6.8 Dated Procedure

DatedProc resembles\ewProc but we provide a timestamp for the rStart database
value on the stack above the procedure type! The stack items which must be sub-
mitted to this ugly procedure are, in order from deep to most superficial are:

e patient
e process type

e timestamp

5 MENUS FOR THE ANALGESIA DATABASE 79

INSERT INTO FUN (fKey, fBody, fName)
VALUES (185,
'BURY->BURY->BURY->
KEY (Process)->NOW->ME->DIGUP->DIGUP->DIGUP->
DOSQL(INSERT INTO PROCESS
(process,rCreated,rPlanner,Person,ProcType,rStart)
VALUES($[], TIMESTAMP "$[]",$[,$[1,$0, TIMESTAMP "$[]"))’,

'DatedProc’);

5.6.9 On or off?

This simple routineOnOrOff accepts a one or zero on the top of the stack, with a
process code below. If the value is (now) on, then a new process is created, but if
it's off, the current process is closed!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (119, 'COPY->BURY->SKIP->&EndProcByType->
DIGUP->SKIP->RETURN->&NewProc->DISCARD’,
'OnOrOff);

5.7 General Comments (906)

Figure 7: General comments

We attach one or more comments to the most recent epoch on a type 1 Process
(A type 1 process records ‘general’ observations). These comments are used as
general alerts, communicating important information between PDA users. If there
is no such epoch, one is created.

5 MENUS FOR THE ANALGESIA DATABASE 80

Let’s look at thecomments subtablghich lists all comments for a particular
patient, and the date on which they were made:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (643, 8, ’'[No comments], ’'Cmnt’, ”, 10);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (644, 1, ', ’'Datel’, ", 1);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (645, 1, -, ’'Note2’, ", 1);

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (14, 643, 644, 1, 'Date’, 0.25);
--- date of epoch column (we discard time component of timestamp)

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (15, 643, 645, 2, 'Comment’, 0.75);
--- observation comment (free text)

Here’s the response to clicking on a comment line — it allows us to display
the whole datum as an Alert.

UPDATE ITEM SET iResponse =
'V->QUERY(SELECT COMMENT.cText FROM COMMENT
WHERE COMMENT.comment = $[J)->Alert’
WHERE iID =645;

Here’s the similar timestamp response:

UPDATE ITEM SET iResponse =
'V->QUERY(SELECT EPOCH.oMade FROM COMMENT,EPOCH
WHERE COMMENT.comment = $[] AND COMMENT.Epoch = EPOCH.epoch)->Alert’
WHERE iID =644;

UPDATE ITEM SET ilnitial =
'X->QMANY(SELECT COMMENT.comment FROM COMMENT,EPOCH,PROCESS
WHERE COMMENT.Epoch = EPOCH.epoch AND EPOCH.Process = PROCESS.process
AND PROCESS.Person = $[] ORDER BY COMMENT.comment DESCY’
WHERE iID = 643;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT EPOCH.oMade FROM COMMENT,EPOCH
WHERE COMMENT.comment = $[] AND COMMENT.Epoch = EPOCH.epoch)->
SPLIT()->DISCARD->&ShortDate’
WHERE ilID =644;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT COMMENT.cText FROM COMMENT
WHERE COMMENT.comment = $[])’
WHERE iID =645;

5 MENUS FOR THE ANALGESIA DATABASE 81

Next, we have the actual commangtnu which includes the comments table
(643) as previously specified.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (906, 20, 'Comment’, 'COMMENTS’);
--- set busyBottom, as well as todo flag. X is patient uid.

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (660, 906, 906, O,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (661, 906, 643, 22,
0.001, 0.140, 0.999, 0.760, 1, 0);
--- above is comments table(643)!
-- group of 1 forces all comments to be clickable!!

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (660, 2, ‘’Done’, ’'done’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (662, 906, 660, 10,
0.750, 0.900, 0.200, 0.08, 0O, 'green’, 'white’);

-- also have a 'more’ button: [2007-11-01]
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (665, 906, 9926, 99,
0.02, 0.900, 0.16, 0.08, 0, 'yellow’, ’black’);

Here’s the response to clicking on the [Done] button. If the comment hasn'’t
yet been stored, we provide a friendly reminder; otherwise we leave the menu.

UPDATE ITEM SET iResponse =
'$[comment]->ISNULL->NOT->SKIP->MENU(-1)->
CONFIRM(Abandon comment?)->NOT->SKIP->MENU(-1)’
WHERE iID = 660;

Continuing ...

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)

VALUES (661, 10, ", 'ctxt', ", 1);
UPDATE ITEM SET iResponse = ’set(comment) WHERE ilD = 661,
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)

5 MENUS FOR THE ANALGESIA DATABASE 82

VALUES (662, 2, °'Add, ’cbtn’, ”, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (663, 906, 661, 3,
0.001, 0.050, 0.790, 0.08, 0);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (664, 906, 662, 4,
0.820, 0.050, 0.170, 0.10, 0);

Here’s the initialisation:

UPDATE ITEM SET ilnitial =

'name(comment)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[I)’
WHERE iID = 906;

And a response to clicking [Add]:

UPDATE ITEM SET iResponse =
'$[comment]->ISNULL->NOT->SKIP->
=Fail(Please fill in comment field first!)->
&MakeGeneralComment->MENU(#0)’
WHERE iID = 662;

If MakeGeneralComment succeeds, we reload the menu to update the com-
ment display!

We also need a check (with several other buttons) to ensure that we don’t aban-
don a completed comment if we've forgotten to press [Add] and move elsewhere:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (291,
'$[comment]->ISNULL->NOT->SKIP->RETURN->
CONFIRM(Abandon comment?)->SKIP->&MakeGeneralComment->RETURN’,
‘'OkComment’);

Finally a function ...

INSERT INTO FUN (fKey, fBody, fName)
VALUES (150,
'#0->MARK->
#1->&FindRecentProcess->URZN->
&ForceEpoch->KEY(Comment)->SWOP->
$[comment]->&FixSQL->
DOSQL(INSERT INTO COMMENT(comment,Epoch,cText)
VALUES($[],$[1,"$(0"))",
'MakeGeneralComment’);

5 MENUS FOR THE ANALGESIA DATABASE 83

Here’s FixSQL which duplicates the single quotes. Because we are inserting
SQL into SQL, the SPLIT and JOIN commands have double the number of single
guotes required! There is a (rather theoretical) potential issue with the MARK
not being balanced by an UNMARK, but this should be ok as we terminate in
a MENU command which clears the stack. Note the use of the deprecated (but
convenient) URZN.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (271,
'MARK (#1)->SPLIT(")->JOIN("")->BURY->UNMARK->DIGUP’,
FixSQL):;

We haven't yet definedforceEpoch, which accepts the ID of a process, and
finds the most recent epoch on that process. If the epoch doesn'’t exist, then a new
epoch is created! Here goes ...

INSERT INTO FUN (fKey, fBody, fName)
VALUES (151,
'COPY->QMANY(SELECT MAX(EPOCH.epoch) FROM EPOCH
WHERE EPOCH.Process = $[])->
QOK->SKIP->&FancyEpoch->SWOP->DISCARD’,

'ForceEpoch’);

In the above FancyEpoch is only invoked if the SQL failed to place anything
on the stack, in which case this function remedies the error.

FancyEpoch accepts the ID of the process to which the new epoch is to be
attached. This routine is unusual in thaleidvesthe process ID on the stack, and
adds a new epoch ID on top of this.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (152,
'COPY->BURY->
KEY(Epoch)->COPY->NOW->ME->DIGUP->
DOSQL(INSERT INTO EPOCH(epoch,oMade,Person,Process)
VALUES($[], TIMESTAMP "$[]”,$[1,$00))’,

'FancyEpoch’);

We almost forgot theShortDate routine. Here we take a date in the format
‘YYYY-MM-DD’ and convertitto ‘DD.MM.YY’, for purposes of concise display
only. We use the ‘days first’ short format as per local (New Zealand!) conventions;
this routine is easily modified for other regions.

5 MENUS FOR THE ANALGESIA DATABASE 84

INSERT INTO FUN (fKey, fBody, fName)

VALUES (157,
‘copy->isnull->not->skip->return->
"-"->SPLIT->BURY->BURY->INTEGER->#2000->

SUB->
DIGUP->INTEGER->DIGUP->INTEGER->

SWOP->"$[].$[]"->SWOP->"$[].0$[]"",
'ShortDate’),

Here’s TinyStamp which is even more brief, omitting the year! We convert
YYYY-MM-DD HH:MM:SS to dd/mm. If NULL is submitted, we return NULL.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (289,
‘copy->isnull->not->skip->return->
SPLIT()->DISCARD->
""->SPLIT->BURY->BURY->DISCARD->
DIGUP->INTEGER->DIGUP->INTEGER->

SWOP->"$[)/$[]",

'"TinyStamp’);

5.8 Pain data (907)

Figure 8: Pain data menu

This menu is the meat of our whole enterprise. We enquire about pain and its
associations — these include the ability to cough effectively, the type of analgesia,

5 MENUS FOR THE ANALGESIA DATABASE 85

and the nature of the surgery provoking the pain (where appropriate). We start
with the menu, and its forward and back (‘Done’) butténs.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (907, 20, 'Pain Data’, 'PAINDATA’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (200, 907, 907, O,
0.001, 0.001, 0.990, 0.990, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (201, 2, ’'Back’, ’'Back button’, 7, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

VALUES (201, 907, 201, 39,

0.003, 0.900, 0.150, 0.08, 0);

UPDATE ITEM SET iResponse = 'MENU(1)’ WHERE iID = 201;

-- back button

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (202, 2, ’'Done’, ’Contin’, 7, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

miX, miY, miW, miH, miGroup, miPaper)

VALUES (202, 907, 202, 41,

0.820, 0.900, 0.160, 0.08, 0, 'green’);
UPDATE ITEM SET iResponse = '&OkComment->Menu(FINISH) WHERE ilD = 202;
-- 'Next’ button

5.8.1 A new check

As of version 0.95, we amend the ‘Done’ button fairly considerably. Based on
field testing, users tend to skip over some menus once the modality has stopped.
Although we're reluctant to indulge in coercion, the following helps — we refuse

to continue if a modality is currently activend the relevant menu hasn’t been
visited by clicking on the relevant [Y] button:

UPDATE ITEM SET iResponse =
X->#99->#159->&IsProc->#1->&NoEvent->
AND->NOT->SKIP->=Fail(Please visit regional menu)->
X->#389->#391->&IsProc->#2->&NoEvent->
AND->NOT->SKIP->=Fail(Please visit PCA menu)->
X->&IsKetamine->#4->&NoEvent->
AND->NOT->SKIP->=Fail(Please visit "Other" [ketamine] menu)->
&OkComment->Menu(FINISH)’ WHERE iID = 202;

SSnitially we specified theconsultant presentout we have altered the screen to remove this
item.

5 MENUS FOR THE ANALGESIA DATABASE 86

The range of 99-159 (exclusive) looks for regional processes, while 390 is
IV PCA. The corresponding event codes are 1 and 2 (to show entry into the rel-
evant menus); ketamine is slightly different, and is present in the ‘other’ menu
associated with event #4. Here are the three associated functions:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (294,

'BURY->$[EpL]->DIGUP->

QUERY(SELECT NONEVENT.noValue FROM NONEVENT WHERE
NONEVENT.Epoch = $[] AND
NONEVENT.noCode = $[])->

QOK->NOT->COPY->BURY->SKIP->DISCARD->DIGUP’,

'NoEvent);

This routine requires the variablEpL, the current epoch, and accepts the
relevant code (1 regional, 2 pca, 4 other). The QOK etc line discards the value
retrieved, if the QUERY succeeded, and returns ‘not success’. Here’s the check
for a process, or process range:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (295,

'"QUERY(SELECT process FROM PROCESS
WHERE PROCESS.Person = $[] AND
PROCESS.ProcType > $[] AND PROCESS.ProcType < $[]
AND PROCESS.rEnd IS NULL)->
QOK->COPY->BURY->NOT->SKIP->DISCARD->DIGUP’,
‘IsProc’);

We submit the person ID and range of process codes (lesser first). To identify
a single code, specify the next lower and higher codes. PCA is 390, regionals are
between 99 and 159. Finding current ketamine use is more tricky:

INSERT INTO FUN (fKey, fBody, fName)

VALUES (296,

'X->QUERY(SELECT PROCESS.process FROM RX,PROCESS WHERE
RX.Drug = 5001 AND
RX.Process = PROCESS.process AND
PROCESS.Person = $[] AND
PROCESS.rEnd IS NULL)->
QOK->COPY->BURY->NOT->SKIP->DISCARD->DIGUP’,
‘IsKetamine’);

5.8.2 Initialisation

Let’s look at the initialisation routine for the menu. Note the similarity to 903.

5 MENUS FOR THE ANALGESIA DATABASE 87

UPDATE ITEM SET ilnitial =
'NAME(comment)->
NAME(EpL)->#1->X->&L astEpoch->SET(EpL)->
X->&FetchldNumber->X->&FetchSurname->
X->&GetBed->"$[] : $[] ($[)"->TITLE’
WHERE iID = 907,

Important is to see whether the patient can manage an effective cough, where
appropriate. We have subsequently added ‘Bowels opened’!

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (205, 1, 'Good cough’, ™);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (205, 907, 205, 10,
0.03, 0.19, 0.50, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (203, 4, 'Y’, ’coY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (203, 907, 203, 11,
0.35, 0.19, 0.07, 0.08, 1);
UPDATE ITEM SET ilnitial =
"Cough"->&PainGet’” WHERE ilD = 203;
UPDATE ITEM SET iResponse =
"Cough"->&SetPain” WHERE iID = 203;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (204, 4, 'N’, ’'coN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (204, 907, 204, 12,
0.45, 0.19, 0.07, 0.08, 1);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (209, 1, ’'Bowels’,);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (209, 907, 209, 14,
0.58, 0.14, 0.50, 0.08, 0);
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (210, 1, ‘’opened’, ");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (210, 907, 210, 13,
0.58, 0.22, 0.50, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE 88

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (212, 4, 'Y’, ’coY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (212, 907, 212, 15,
0.78, 0.19, 0.07, 0.08, 3);
UPDATE ITEM SET ilnitial =
'#1140->&FetchProblem’ WHERE ilD = 212;
UPDATE ITEM SET iResponse =
'#1140->&SpawnProblem->#1->&SetProblem’
WHERE ilID = 212;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (213, 4, 'N’, 'coN);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (213, 907, 213, 16,
0.88, 0.19, 0.07, 0.08, 3);

UPDATE ITEM SET ilnitial =
'#1140->&FetchProblem->QOK->SKIP->#1->BOOLEAN->NOT’
WHERE iID = 213;

UPDATE ITEM SET iResponse =
'#1140->&SpawnProblem->#0->&SetProblem’

WHERE iID = 213;

UPDATE ITEM SET ilnitial =
"Cough"->&PainGet->COPY->ISNULL->
SKIP->NOT->RETURN’' WHERE iID = 204;

UPDATE ITEM SET iResponse =
'NOT->"Cough"->&SetPain’” WHERE iID = 204,

It might still be an idea to document who the pain consultant is (if they are
indeed present), but we've commented this feature out for now! Here’s the code:

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (228, 1, ’Consultant’, ”);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (228, 907, 228, 3,
0.03, 0.021, 0.30, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList)

5 MENUS FOR THE ANALGESIA DATABASE 89

VALUES (227, 6, ”, ’'Cons’,

'->&ListConsultants’);
UPDATE ITEM SET ilnitial = '&FetchConsultant WHERE iID = 227,
= 227,

UPDATE ITEM SET iResponse ='&NoteConsultant’ WHERE ilD

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)

VALUES (227, 907, 227, 3,
0.02, 0.107, 0.49, 0.08, 0);

Here’s the special function to list consultant surnames. As with all lists we
provide pairs of items, the ID and the surname.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (158,
'"QMANY (SELECT PERSDATA.pdoPerson,PERSDATA.pdoSurname

FROM PERSDATA,PERSON WHERE
PERSDATA.pdoPerson = PERSON.person AND

PERSON.pStatus > 7)’,

‘ListConsultants’);

...and here’s th&(oteConsultant routine which records who the participating
consultant is! On the stack will be the unique ID of the consultant.

INSERT INTO FUN (fKey, fBody, fName)VALUES(171,

'BURY->
#1->X->&LastEpoch->BURY->
KEY(Actor2)->DIGUP->DIGUP->
DOSQL(INSERT INTO ACTOR2(actor2,Epoch,Arole,Person)

VALUES($[1,$00,1,$0))",

'NoteConsultant’);
We also need &etchConsultant routine to retrieve this value. This assumes
nothing more than that the current patient ID is X.

INSERT INTO FUN (fKey, fBody, fName)VALUES(172,

'#1->X->&LastEpoch->
QUERY(SELECT ACTOR2.Person FROM ACTOR2 WHERE ACTORZ2.Epoch = $[])->

QOK->SKIP->RETURN(?)->
QUERY(SELECT PERSDATA.pdoSurname FROM PERSDATA

WHERE PERSDATA.pdoPerson = 3[]),

'FetchConsultant’);

5 MENUS FOR THE ANALGESIA DATABASE 90

Technically we should probably select using MAX, but we don’t anticipate
many consultants flocking to one particular ward round. In addition, we might
further constrain the PROCESS.

5.8.3 Pain Scores

We now turn to pain scores. Our values in the explicit list are duplicated, owing
to the pairwise structure of our lists:

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (206, 6, ", ’'Pm’,
'0]0]1]1|2]2|3]3|4]4|5]5]6]6]7]7]8]8]|9]9]10]10]);
UPDATE ITEM SET ilnitial =
""Movement"->&PainGet->&ReplaceNull(?)’
WHERE iID = 206;

UPDATE ITEM SET iResponse =
""Movement"->&SetPain’
WHERE iID = 206;

INSERT INTO ITEM (iID, iType, iText, iName, iList)
VALUES (207, 6, ", 'Pr,
'0]0]1]1|2]2|3]3|4|4|5]5]6|6]7|7]8]8]|9]9]10]|10]);
UPDATE ITEM SET ilnitial =
"Rest"->&PainGet->&ReplaceNull(?)’
WHERE iID = 207;

UPDATE ITEM SET iResponse =
"Rest"->&SetPain” WHERE iID = 207;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (206, 907, 206, 2,
0.77, 0.02, 0.18, 0.08, 0);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (207, 907, 207, 4,
0.33, 0.02, 0.18, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (225, 1, 'PAIN: rest, ");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (225, 907, 225, 3,
0.02, 0.02, 0.50, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (226, 1, ’'moving’, ");

5 MENUS FOR THE ANALGESIA DATABASE 91

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (226, 907, 226, 5,
0.57, 0.02, 0.50, 0.08, 0);

...and next examine the various types of analgesic modakt®ain accepts
one of three pain observation types (Rest, Movement, or Cough), as well as a
score, 0-10 for the first two types, and zero/one for the last. Because the score is
submitted deep to the type, we swop these two values before we locate the current
pain observation score (PAINSCORE). The routine assumes that the current ob-
servation ID is present in the variable EpL, created when the relevant menu was
entered.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (164,
'SWOP->$[EpL]->
&FindPainScore->
DOSQL(UPDATE PAINSCORE SET pso$[]=$[]
WHERE PAINSCORE.painscore = $[]),
'SetPain’);

Here’s FindPainScore, which takes the ID of an epoch on the stack and re-
places it with the ID of a PAINSCORE:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (165,
'COPY->QUERY(SELECT PAINSCORE.painscore FROM PAINSCORE
WHERE PAINSCORE.Epoch = $[])->
QOK->SKIP->&NewPainScore->SWOP->DISCARD->RETURN’,

'FindPainScore’);

The subsidianf\ewPainScore routine is simple, reading an EPOCH id, copy-
ing this, and then replacing the copy with a PAINSCORE id:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (166,
'COPY->BURY->KEY (Painscore)->COPY->DIGUP->
DOSQL(INSERT INTO PAINSCORE(painscore,Epoch)VALUES($[],$[]))’

'NewPainScore’);

PainGet retrieves a current pain score, if present, otherwise returning a ques-
tion mark. In many ways it's similar tgetPain. Submit the relevant pain obser-
vation type, and ensure thBpL is set.

5 MENUS FOR THE ANALGESIA DATABASE 92

INSERT INTO FUN (fKey, fBody, fName)
VALUES (167,
'$[EpL]->&FindPainScore->
QUERY(SELECT PAINSCORE.pso$[] FROM PAINSCORE
WHERE PAINSCORE.painscore = 3[]),

'PainGet’);

Some routines which invok&ainGet subsequently call the triviaeplaceNulL,
which accepts a replacement value on the top of the stack, below which is the item
to be tested. If the item is null, return the replacement, otherwise discard the re-
placement and leave the item unchanged!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (168,
'SWOP->COPY->ISNULL->SKIP->SWOP->DISCARD’,

'ReplaceNull’);

We cannot use URZN as this will cause us to also replace zero (and not just
null).

5.8.4 Checking analgesic modalities: regional

The user should be encouraged (but not forced) to document whether each anal-
gesic modality is present, first regional anaesthesia. Process types which code for
regional infusions have an ‘ProcType’ value from 200 to 250 inclusive. Underly-
ing this should be process types between 100 and 150 inclusive, which code for
the presence of regional infusion catheters

In order to prevent a user from ritually ticking a process already displayed as
‘present’ we only reveal (or alert) when the user has already ticked! This is a
safety feature, repetitively correlating the user’s observations with what is present
in the database! The ChecklsEvent implements this little wrinkle, using code #1
for regional procedures.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (208, 1, ‘'regional’, 'rgn’;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (208, 907, 208, 20,
0.06, 0.341, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (217, 4, 'Y', 'reY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

5 MENUS FOR THE ANALGESIA DATABASE 93

miX, miY, miwW, miH, miGroup)
VALUES (217, 907, 217, 21,
0.08, 0.431, 0.07, 0.08, 2);
UPDATE ITEM SET ilnitial = '#1->&CheckIsEvent’ WHERE iID = 217,

UPDATE ITEM SET iResponse =

'&0OkComment->#104->#151->&ProcBetween->
BOOLEAN->NOT->SKIP->MENU(REGIONAL)->
MENU(STARTREG)’

WHERE ilD = 217;

The above doesn't usgindRegionalas we wish to ignore spinals, which Find-
Regional identifies.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (218, 4, 'N, 'reN";
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (218, 907, 218, 22,
0.18, 0.431, 0.07, 0.08, 2);
UPDATE ITEM SET ilnitial = '#1->&CheckNonevent’ WHERE iID = 218;

See how we leave both Y and N boxes unchecked until the user has com-
mitted him/herself forthis visit For the Y box, we look for evidence that an
actual observation has been made on such a process; for the N box, we must look
for a negative observation (in the NONEVENT table) related to EpL, the current
observation epoch @eneralobservationnotan observation on an epidural ‘non-
process’)!

Here is the ‘non-event checking routine’:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (174,
'BURY->$[EpL]->DIGUP->
QUERY(SELECT NONEVENT.noValue FROM NONEVENT WHERE
NONEVENT.Epoch = $[] AND
NONEVENT.noCode = $[])->
QOK->SKIP->RETURN(#0)->RETURN’,
'CheckNonevent’);

We look for the relevant NONEVENT on the current observation process,
EpL. Note that for a regional ‘nonevent’ the code is 1. If there is a recent record
that no even is present, we return -1, otherwise 0. See how we use NEG to return -
1in place of 1. This little wrinkle allows us repeated access to a pushbutton which
otherwise becomes inaccessible once it's on!!

Very similar is the odd ChecklsEvent:

5 MENUS FOR THE ANALGESIA DATABASE 94

INSERT INTO FUN (fKey, fBody, fName)
VALUES (240,
'BURY->$[EpL]->DIGUP->
QUERY(SELECT NONEVENT.noValue FROM NONEVENT WHERE
NONEVENT.Epoch = $[] AND
NONEVENT.noCode = $[])->
QOK->SKIP->RETURN(#0)->
NOT,
'ChecklsEvent);

The aberration here is thatly if the nonevent existand the result is zero,
i.e. an ‘isevent’ is recorded, do we return 1!

There’s another issue, that with grouping. The standard response when we

group two buttons is tanly let the response be run when the button turns ON.
If the button is already on and we click, nothing happens (we have to turn on the
corresponding grouped button, thereby turning off the current one, for anything
to happen on a subsequent click). But what if we wish to enter the epidural menu
again because we forgot to add a particular observation?

A former solution was to ‘de-group’ the relevant buttons, (but then we had
potential conflict when we turned off the epidural using the other button — the
solution was to make the relevant changes and reload the menu!) The Perl pro-
gram automatically checked for 'no associated grouping’ and if so registers a -1
in place of 1, allowing a repeat click and script execution, but the initialisation
script also had to set the value to -1 (NEG) rather than 1 to permit a repeat click
afterintialisation. Rather clumsy! We've now fixed the Perl code to accommodate
repeated clicks.

Now let’s look at the response script for the ‘N’ button.

UPDATE ITEM SET iResponse =
'#104->#151->&HackA(#1)’
WHERE iID = 218;

In the case of a regional process (codes from 105 to 150 inclusive), if the
process exists (ProcBetween returns a non-zero value), we branch off to stop the
regional; otherwise we record a ‘non-event’, i.e. that the user has documented the
absence of a regional process.

Here’s how we record a ‘non-event’, given the type of nonevent on the stack.
The codes 1-4 represent regional, PCA, oral and other respectively. As usual, EpL
is the current general observation (for this epoch). Eplstbe defined.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (175,
'COPY->$[EpL]->

5 MENUS FOR THE ANALGESIA DATABASE 95

QUERY(SELECT nonevent FROM NONEVENT WHERE noCode = $[] AND Epoch = $[])->
QOK->SKIP->=NewNonevent(#1)->

SWOP->DISCARD->
DOSQL(UPDATE NONEVENT SET noValue=1 WHERE nonevent = $[]),

'SetNonevent);

Here’s NewNonevent, which assumes the noValue value is on the top of the
stack, and beneath this, noCode. LikgN\onevent, it requires the local variable
EpL.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (241,
'BURY->BURY->
KEY(Nonevent)->$[EpL]->DIGUP->DIGUP->
DOSQL(INSERT INTO NONEVENT(nonevent,Epoch,noCode,noValue)
VALUES($[],$00.$00.$0))",
'NewNonevent');

Next we have the very similar SetEvent, which records user documentation of
an event (curiously by using a 0 in the NONEVENT noValue field).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (242,
'COPY->$[EpL]->
QUERY(SELECT nonevent FROM NONEVENT WHERE noCode = $[] AND Epoch = $[])->
QOK->SKIP->=NewNonevent(#0)->
SWOP->DISCARD->
DOSQL(UPDATE NONEVENT SET noValue=0 WHERE nonevent = $[]),

'SetEvent);

By the way, here’s our generic warning/error alert, which will often be invoked
by =Fail rather than &Fail, to prevent further processing of the script!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (176,
"Alert(3[])’,

"Fail’);

A similar but slower and more dramatic routinefgilAndReload which not
only ‘fails’ but reloads the current menu.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (195,
"Alert($[])->MENU(0)’,
'FailAndReload’);

5 MENUS FOR THE ANALGESIA DATABASE 96

KillManyProcs accepts the patient ID, the lower bound of the process nature,
and the upper bound and terminates all processes with a nagtweenthose
bounds.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (205,
'‘BURY->BURY->BURY->NOW->DIGUP->DIGUP->DIGUP->
DOSQL(UPDATE PROCESS SET rEnd=TIMESTAMP "$[]” WHERE
PROCESS.Person = $[] AND
PROCESS.rEnd IS NULL AND
PROCESS.ProcType > $[] AND
PROCESS.ProcType < $[]),
'KillManyProcs’);

Here’s the routine to do the dastardly deedXi/lproc. Given the process ID,
terminate it. We use DEPTH to check whether there’s anything on the stack — if
not, we stop (possibly also terminating a REPEAT statement in the caller).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (182,
'DEPTH->GREATER(#0)->SKIP->STOP->
BURY->NOW->DIGUP->
DOSQL(UPDATE PROCESS SET rEnd=TIMESTAMP "$[]"
WHERE process = 9[]),
'KillProc’);

Finally, KillDated, a variant of KillManyProcs which requires the variable
rdate as the termination date stamp. This isn’t very precise, always specifying a
time of 00:00:00.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (288,
'BURY->BURY->BURY->$[rdate]->"$[] 00:00:00"->
DIGUP->DIGUP->DIGUP->
DOSQL(UPDATE PROCESS SET rEnd=TIMESTAMP "$[]" WHERE
PROCESS.Person = $[] AND
PROCESS.rEnd IS NULL AND
PROCESS.ProcType > $[] AND
PROCESS.ProcType < $[]),
'KillDated");

We initially made rather a mess of things by leaving out ‘PROCESS.rEnd IS
NULL, forcing prior processes (correctly terminated) to overlap with the current
one, if multiple processes of this type existed! We only fixed this on 31/1/2008.

5 MENUS FOR THE ANALGESIA DATABASE 97

5.8.5 Checking for IV PCA

Next let's do intravenous PCA. In a manner analogous to our plan for regionals,
we do not reveal the process until the user has! We use the event code for IV PCA
as #2.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (214, 1, IV PCA', 'ivpc);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (214, 907, 214, 23,
0.34, 0.341, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (219, 4, 'Y, 'ivY");

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

VALUES (219, 907, 219, 24,

0.32, 0.431, 0.07, 0.08, 4);

UPDATE ITEM SET ilnitial =

'#2->&ChecklsEvent’ WHERE iID = 219;
UPDATE ITEM SET iResponse = '&0OkComment->&GolvPca’ WHERE ilID = 219;

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (220, 4, °'N’, 'ivN);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)

VALUES (220, 907, 220, 25,

0.42, 0.431, 0.07, 0.08, 4);

UPDATE ITEM SET ilnitial =

'#2->&CheckNonevent WHERE iID = 220;

Here’s the PCA ‘N’ button response. Note that the process code for IV PCA
is 390.

UPDATE ITEM SET iResponse =
'#389->#391->&HackA(#2)’
WHERE iID = 220;

5.8.6 Checking for orals

Next oral therapy, which is similar to regionals and also to PCA .. . but the process
code for enteral drugs is 50 and the event code is #3.

5 MENUS FOR THE ANALGESIA DATABASE 98

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (211, 1, ‘orals’, ‘’ora’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (211, 907, 211, 26,
0.59, 0.341, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (221, 4, 'Y’, ‘orY");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (221, 907, 221, 27,
0.56, 0.431, 0.07, 0.08, 6);
UPDATE ITEM SET ilnitial =
'#3->&CheckIsEvent’
WHERE iID = 221;
UPDATE ITEM SET iResponse =
'&OkComment->&GoOrals’ WHERE ilID = 221;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (222, 4, 'N’, 'orN’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

VALUES (222, 907, 222, 28,

0.66, 0.431, 0.07, 0.08, 6);

UPDATE ITEM SET ilnitial =

'#3->&CheckNonevent’” WHERE iID = 222;

UPDATE ITEM SET iResponse =
'#49->#51->&HackA(#3)’
WHERE ilD = 222;

5.8.7 Checking for other analgesic modalities

...and last on the line is a mishmash of other modalities, analogous to the above.
The event codes we use (as paralgesiaDBpartirange from 260 to 299 inclu-

sive, and encompass plain old ‘IV drug administration’, which is distinct from IV
PCA (PCA codes are in the range 300—399). The event code is #4.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (215, 1, ‘’other’, ’oth’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (215, 907, 215, 29,
0.81, 0.341, 0.20, 0.08, 0);

INSERT INTO ITEM (D, iType, iText, iName)

5 MENUS FOR THE ANALGESIA DATABASE 99

VALUES (223, 4, 'Y’, ’otY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (223, 907, 223, 30,
0.80, 0.431, 0.07, 0.08, 8);
UPDATE ITEM SET ilnitial =
'#4->&ChecklsEvent’ WHERE iID = 223;
UPDATE ITEM SET iResponse =
'&OkComment->&GoOther WHERE iID = 223;

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (224, 4, 'N’, 'otN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (224, 907, 224, 31,
0.90, 0.431, 0.07, 0.08, 8);
UPDATE ITEM SET ilnitial =
'‘#4->&CheckNonevent’ WHERE iID = 224;
UPDATE ITEM SET iResponse =
'ALERT(Check/record OTHER RX non-event)’ WHERE ilD = 224;

UPDATE ITEM SET iResponse =
'#259->#300->&HackA(#4)’
WHERE iID = 224;

The following item will pull in the most recent comment.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (159, 1, -, 're’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (159, 907, 159, 3,
0.01, 0.780, 0.98, 0.08, 1);

...and here is the clumsy initialisation routine:

UPDATE ITEM SET ilnitial =
"X->QMANY(SELECT MAX(COMMENT.comment) FROM COMMENT,EPOCH,PROCESS
WHERE COMMENT.Epoch = EPOCH.epoch AND EPOCH.Process = PROCESS.process
AND PROCESS.Person = $[])->
QOK->SKIP->STOP->
QUERY(SELECT COMMENT.cText FROM COMMENT WHERE COMMENT.comment = $[])’
WHERE iID = 159;

UPDATE ITEM SET iResponse =
"X->QMANY(SELECT MAX(COMMENT.comment) FROM COMMENT,EPOCH,PROCESS
WHERE COMMENT.Epoch = EPOCH.epoch AND EPOCH.Process = PROCESS.process

5 MENUS FOR THE ANALGESIA DATABASE 100

AND PROCESS.Person = 3[])->

QOK->SKIP->STOP->

QUERY(SELECT COMMENT.cText FROM COMMENT WHERE COMMENT.comment = $[])->Alert’
WHERE iID =159;

We attach our ‘problem’ epoch to the general data observation process (code
1), a useful economy!
We provide the facility to add a comment:

-- comment box:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1663, 907, 661, 3,
0.001, 0.570, 0.990, 0.08, 0);
-- 'Add’ button:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1664, 907, 662, 4,
0.820, 0.660, 0.170, 0.08, 0);

--INSERT INTO ITEM (ilD, iType, iText, iName)

-- VALUES (1665, 1, ’'Enter new comment, click =>', ");
--INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

-- miX, miY, miW, miH, miGroup)

-- VALUES (1665, 907, 1665, 14,

- 0.010, 0.660, 0.800, 0.08, 0);

-- comment button:
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (158, 2, 'All comments’, 'AdCmt, ", 1);

UPDATE ITEM SET iResponse = '&OkComment->MENU(COMMENTS) WHERE ilD = 158;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (730, 907, 158, 40,
0.28, 0.90, 0.44, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE 101

5.9 Adding operation data (908)

Figure 9: Adding an operation

Previously in this section we coded both surgical type and site. We have amended
this to code for nature of surgery (e.g. hepatobiliary) but have removed the ‘site’
specification for several reasons the main ones being both redundancy (obstet-
ric operation on lower abdomen) and the potential for all sorts of nonsense (eye
surgery on the foot?)!

Here we display observations on surgical site and type. First we have to find
all surgical processes on this patient. For each process we find an observation with
an associated SURGTYPEOB and this allows us to list the détaltere’s the
idea. The process ID for an operation is 500:

SELECT EPOCH.epoch FROM EPOCH,PROCESS
WHERE EPOCH.Process = PROCESS.process AND
PROCESS.ProcType = 500 AND
PROCESS.Person = $[]

We create a polymorphic table along the same lines of our comment table
(Section5.7).

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (620, 8, ’'[No operation], 'Cmnt, ", 6);

Here we initialise the table "V items’ so we can populate its rows:

S6Although its conceivable that we might have multiple observations and multiple types and
sites for one such observation, we will initially cheat and assume one per epoch, and one epoch
per procedure. Nasty :-(

5 MENUS FOR THE ANALGESIA DATABASE 102

UPDATE ITEM SET ilnitial = 'X->QMANY(SELECT EPOCH.epoch
FROM EPOCH,PROCESS
WHERE EPOCH.Process = PROCESS.process AND
PROCESS.ProcType = 500 AND
PROCESS.Person = $[])’
WHERE iID = 620;

--INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
- VALUES (623, 1, -, ’'Sitl’, ", 1)

-- [site coding disabled]

--INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,

-- irName, irFraction)

- VALUES (623, 620, 623, 3,

- 'Op. Site’, 0.40);

--- site of surgery (disabled)

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction)
VALUES (621, 620, 621, 1,
'Date’, 0.24);
--- date of observation

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction)
VALUES (622, 620, 622, 2,
'Op. Type', 0.34);
--- type of surgery

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction)
VALUES (624, 620, 624, 3,
'Note’, 0.42);

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT SURGTYPEOB.SurgType FROM SURGTYPEOB
WHERE SURGTYPEOB.Epoch = $[])->
COPY->ISNULL->NOT->SKIP->RETURN(?)->
QUERY(SELECT SURGTYPE.ctText FROM SURGTYPE
WHERE SURGTYPE.surgtype = $[J)’
WHERE ilD =622;

We've now disabled site coding. Here was the script:

UPDATE ITEM SET ilnitial =
'V->QUERY/(SELECT SURGSITEOB.SurgSite FROM SURGSITEOB
WHERE SURGSITEOB.Epoch = $[])->

5 MENUS FOR THE ANALGESIA DATABASE 103

COPY->ISNULL->NOT->SKIP->RETURN(?)->
QUERY(SELECT SURGSITE.csText FROM SURGSITE

WHERE SURGSITE.surgsite = $[])’
WHERE iID =623;

Let's get the date associated with a procedure:

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT PROCESS.rStart FROM EPOCH,PROCESS
= PROCESS.process)->

WHERE EPOCH.epoch = $[] AND EPOCH.Process =
SPLIT()->DISCARD->&ShortDate’

WHERE ilD =621;
...and the comment:
UPDATE ITEM SET ilnitial =

'V->QUERY(SELECT cText FROM COMMENT

WHERE Epoch = 3$[])
WHERE iID =624;

We make our operation comment clickable:

UPDATE ITEM SET iResponse =
'V->QUERY(SELECT cText FROM COMMENT

WHERE Epoch = $[])->Alert’
WHERE iID =624;

Next, we have the actual operatioreny which includes the above table

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (908, 20, 'Surgery’, 'SURGERY");

Here’s the initialisation string:

UPDATE ITEM SET ilnitial = 'NAME(typeld)->NAME(surgDate)->
NAME(surgnote)->NULL->SET(surgnote)->

#0->SET(typeld)->
NAME(id)->X->SET(id)->
NOW->set(surgDate)->

X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])’
WHERE ilD = 908;
We set all values to zero for easy testing later on! The varisitééd has been
removed from the above initialisation (9/2007).

57A peculiar convention/hack is that in order to make text fields clickable, the miOrder must be
nonzero in the containing MENUITEMS row defining the table containing the comment!

5 MENUS FOR THE ANALGESIA DATABASE 104

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (630, 908, 908, O,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup, miEnabled)
VALUES (631, 908, 620, 22,
0.001, 0.300, 0.999, 0.500, 1, 0);
-- we make the miGroup nonzero to allow 'clickable’ comments on the PDA!

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (632, 2, ’Done’, ’'done’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (632, 908, 632, 10,
0.750, 0.900, 0.200, 0.08, 0O, 'green’, 'white");

Here’s the response to quitting the menu. If both selectable items are unfilled
(null surgnote, zero typeld), then leaving is fine; otherwise confirm before aban-
doning data!

UPDATE ITEM SET iResponse =
'$[surgnote]->ISNULL->$[typeld]->SAME(#0)->AND->NOT->SKIP->MENU(-1)->
CONFIRM(Abandon data?)->NOT->SKIP->MENU(-1)’

WHERE iID = 632;

We continue..

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (637, 1, ’on7, ’sdat);

INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (639, 10, ", 'c’, 1);

UPDATE ITEM SET iResponse = 'SET(surgnote)’
WHERE iID = 639;

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (633, 12, ", ’ctxt’, ", 1);
UPDATE ITEM SET ilnitial =
'NOW->SPLIT()->DISCARD’ WHERE iID = 633;
-- note that iType is 12 (date field) for date picker!

INSERT INTO ITEM (ilD, iType, iText, iName)

5 MENUS FOR THE ANALGESIA DATABASE

VALUES (638, 1, ’'note:, ’sdat);

UPDATE ITEM SET iResponse =

™$[] 00:00:00"->SET(surgDate)’

WHERE iID = 633;
-- above should first VALIDate ?!
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)

VALUES (634, 2, ’'Add, ’cbtn’, ”, 1);

UPDATE ITEM SET iResponse = '&InsertOpData’
WHERE iID = 634;
if MakeOperation succeeds, it reloads the menu!

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (635, 6, ", 'Op. Site’, '->&ListOpSites’);
UPDATE ITEM SET ilnitial = ™? Site” WHERE iID = 635;

Site capture is disabled:

{\footnotesize\begin{verbatim}
UPDATE ITEM SET iResponse =
'SET(siteld)’
WHERE ilD = 635;

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (636, 6, ", 'Op. Type’, ->&ListOpTypes’);
UPDATE ITEM SET ilnitial = ™? Type" WHERE ilD = 636;

UPDATE ITEM SET iResponse =
'SET(typeld)’
WHERE iID = 636;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (633, 908, 633, 3,
0.63, 0.05, 0.35, 0.08, 0);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (637, 908, 637, 3,
0.50, 0.05, 0.06, 0.08, 0);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (638, 908, 638, 3,

105

5 MENUS FOR THE ANALGESIA DATABASE 106

0.01, 0.15, 0.10, 0.08, 0);
-- comment label 'note:’

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (639, 908, 639, 3,
0.16, 0.15, 0.66, 0.08, 0);
-- actual comment box (entry) -- short!

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (636, 908, 636, 3,
0.01, 0.050, 0.48, 0.08, 0);
--INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
-- miX, miY, miwW, miH, miGroup)
- VALUES (635, 908, 635, 3,
- 0.50, 0.050, 0.48, 0.08, 0);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (634, 908, 634, 4,
0.83, 0.150, 0.15, 0.08, 0);

Here are the functions to list operation sites and types. As usual, they return
pairs of items to use within a poplist.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (159,
'"QMANY (SELECT surgtype,ctText FROM SURGTYPE)',
'ListOpTypes”);

Site coding is disabled:

{\footnotesize\begin{verbatim}
INSERT INTO FUN (fKey, fBody, fName)
VALUES (160,
'QMANY(SELECT surgsite,csText FROM SURGSITE)’,
'ListOpSites’);

And finally, the all-important insertion of the actual (operation type) details!
The ‘unfilled’ typeld value is zero and causes an error message; a comment
(surgnote) is optional. If no comment exits, the MENU(0O) statement terminates
the routine and reloads the menu.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (161,
'$[typeld]->SAME(#0)->NOT->SKIP->=FailAndReload(Op type?)->

5 MENUS FOR THE ANALGESIA DATABASE 107

$[surgDate]->#500->&DatedPandE->COPY->
BURY->BURY->
KEY (Surgtypeob)->$[typeld]->DIGUP->
DOSQL(INSERT INTO SURGTYPEOB(surgtypeob,SurgType,Epoch)
VALUES($[],$[].$00))->
$[surgnote]->ISNULL->NOT->SKIP->MENU(0)->
KEY(Comment)->DIGUP->$[surgnote]->&FixSQL->
DOSQL(INSERT INTO COMMENT(comment,Epoch,cText)
VALUES($[].$[1,"$0))->
MENU(0)’,
'InsertOpData’);

The attached comment is optionalatedPand’E creates the epoch and pro-
cess given the relevant date. Type 500 is a surgical process. Formerly we used Pro-
cAndEpoch which doesn’t accommodate a start date different from today (now)!
See the comment on MARK and URZN at MakeGeneralComment. We don’t go
to the finicky detail of adding in the operation time.

Here's DatedPandE, which allows us to createow a process with the start
timestamp supplied on the stack below the process type code:

INSERT INTO FUN (fKey, fBody, fName)

VALUES (238,
'BURY->BURY->"Process"->KEY->copy->$[id]->DIGUP->now->me->DIGUP->
DOSQL(INSERT INTO PROCESS

(process,Person,rStart,rCreated,rPlanner,ProcType)

VALUES($[].$[], TIMESTAMP "$[]”, TIMESTAMP "$[]”,$[1.%[]))->
"Epoch"->KEY->copy->BURY->SWOP->now->me->
DOSQL(INSERT INTO EPOCH(epoch,Process,oMade,Person)
VALUES($[],$[,. TIMESTAMP "3$[]",$[]))->DIGUP’,
'DatedPandE’);

5 MENUS FOR THE ANALGESIA DATABASE 108

5.10 The regional menu (904)

Figure 10: Regional menu

First we create the main menu.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (904, 20, 'Regional’, 'REGIONAL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (904, 904, 904, 12,
0.000, 0.200, 0.999, 0.999, 0);

Of particular importance is the menu initialisation in which we create several
local variables including EpL (the most recent epoch) to which we attach a signal
that we've recently entered this menu (SetEvent), and regional-related processes
and epochs (prR, EpR). We also have similar variablesnfimsionrelated pro-
cesses and epochs — prQ and EpQ.

In the following the local variable ‘fentanyl’ is not used, but we still must set
it up, as within the menu we use GetinfusionLabel which tests for the presence of
fentanyl and requires that variable!

UPDATE ITEM SET ilnitial =
'NAME(EpL)->NAME(EpR)->NAME(prR)->NAME(prQ)->NAME(EpQ)->
NAME(fentanyl)->
#1->X->&LastEpoch->SET(EpL)->
&SetEvent(#1)->
&FindRegional->SET(prR)->
$[prR]->
QUERY(SELECT ProcType FROM PROCESS WHERE process = $[])->
QUERY(SELECT rptNature FROM PROCTYPE WHERE proctype = $[])->

5 MENUS FOR THE ANALGESIA DATABASE 109

X->&FetchldNumber->SWOP->

TITLE(S$[: $[)->

&NewRgnEpoch->SET(EpR)->

&CheckInfusion->SET(prQ)->

&FindInfuObs->SET(EpQ)->

NAME(pethidine)->#0->SET (pethidine)->

$[prQ]->QUERY(SELECT RX.Drug FROM RX WHERE RX.Process=$[])->
QOK->SKIP->RETURN->SAME(#103)->SET(pethidine)’

WHERE iID = 904;

The final section where we define the NAME pethidine will set this value to
1 if a pethidine infusion (code 103) is being administetedlhis allows us to
configure later items in the menu!

Check out NewRgnEpoch in particular — it requires that EpL is defined, as
this value is used as a ‘benchmark’ for determining whethexcantprocess ex-
ists!

On entering the REGIONAL menu, we first identify the most recent general
observation, and then find/create a new, specific regional observation. We place
this in the variable EpR, and reference it throughout the menu. We also set aside
the important local variable prR, which is used to store the regiomaless™®

The additional local variablggrQ andEpQare respectively used to describe
the actual process of epidural infusion, and the current epoch on this process (See
Section5.10.2).

FindRegional locates the current regional procé$Once the process is es-
tablished, we find/create a new epoch in that process, and retain this epoch.

We only create e.g. the epidural catheter access process (code 110) and NOT
at this stage the infusion process (e.g. code 210 for epidural infusion, code 310
for PCEA), because we haven't been told whether an infusion is occurring or not!
(The user does this later). However, we still look for an existing infusion, and a
recent epoch on this infusion, usiffgndAdministration and FindInfuObs! This
approach caters for the case whereresenterthe menu, and want to see what we
wrote! These last two functions return a value of zero if they fail.

AN ASIDE: Because observations such as motor power, pressure areas, block
and site are not necessarily dependent on the infiiSitdrese observations will
be recorded on the epoch associated with the epidural process and not the infusion
process!

INSERT INTO FUN (fKey, fBody, fName)

58This ‘hard coding’ is rather awful. Ideally we should look up the code for epidural pethidine.

59A bit of a hack!

60At present the assumption is that only one such process is current. The database design allows
for more but our implementation is more ‘reasonable’.

61There might be cord trauma or an epidural haematoma!

5 MENUS FOR THE ANALGESIA DATABASE 110

VALUES (179,
'#99->#151->&ProcBetween->
QOK->SKIP->MENU(#1)->RETURN’,

'FindRegional’);

Formerly we had the first parameter as #98, but this would include follow-up
observations, an obvious error which caused some trighfortunately when we
first implemented this, we ignored the use&#dRegional in menu 930, which
caused a fatal (but interesting) PDA error!

FindRegionalis used in the initialisation of menus 904, 930 (regional check
at 24 hours) and 952 (Overview of regional problems). A failure is fairly catas-
trophic, so we force a MENU(#1) if the SQL fails!

It doesnotinclude epidural checks at 24 hours (code 9@hcBetweenlocates
anyactiveprocess inside the range provided (for the patient X). It returns zero if
the process doesn’t exist.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (177,
'‘BURY->BURY->X->DIGUP->DIGUP->
QUERY(SELECT PROCESS.process FROM PROCESS WHERE
PROCESS.Person = $[] AND
PROCESS.rEnd IS NULL AND
PROCESS.ProcType > $[] AND
PROCESS.ProcType < $[])->
QOK->SKIP->RETURN(#0)->RETURN’,
'ProcBetween’);

Some callers ofProcBetween rely on QOK as a subsequent test.

Given a process ID in prRNewRgnEpoch finds a recent epoch on that pro-
cess, or if one doesn’t exist, makes one, returning the code. The proceaussiD
already have been stored in the variable prR!

INSERT INTO FUN (fKey, fBody, fName)

VALUES (181,
'$[prR]->&RecentProcObs->COPY->#0->SAME->SKIP->RETURN->
DISCARD->KEY(Epoch)->COPY->NOW->ME->$[prR]->
DOSQL(INSERT INTO EPOCH(epoch,oMade,Person,Process)

VALUES($[], TIMESTAMP "$[]”,$[1,$[]))->

COPY->BURY->KEY(Rgnobs)->DIGUP->
DOSQL(INSERT INTO RGNOBS(rgnobs,Epoch)VALUES($[].$[1))’,

'NewRgnEpoch’);

52This error did suggest that if we have putin an epidural, stop it, and then start agypidheral
we might remove the type 99 process!

5 MENUS FOR THE ANALGESIA DATABASE 111

In addition, we make a RGNOBS table entry for recording of pressure/site/motor
block and sensory level observations. The above routine is rather ciimsy.
RecentProcObs is similar to LastEpoch but here we simply specify the ID of
the process (not the type) and find an epoch, if present. If there msatching
epoch we immediately return zero, otherwise we ensure that the epoctater
thanEpL, the general epoch we pulled out previously! Obviously, EpL must exist
for this to work.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (180,
'QMANY(SELECT MAX(EPOCH.epoch) FROM EPOCH
WHERE EPOCH.Process = $[])->
QOK->SKIP->RETURN(#0)->COPY->$[EpL]->
GREATER->SKIP->RETURN(#0)->RETURN’,

'RecentProcObs’);

5.10.1 Filling in menu details

Let's examine the menu components. Here is the ‘Done’ button, followed by
the pushbuttons for the five options of motor block (OK or not), pressure areas,
mobility, level and site.

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (401, 2, ’'Done’, ’Exitbtn’, ”, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (401, 904, 401, 39,

0.750, 0.900, 0.200, 0.08, O, 'green’, 'white’);

UPDATE ITEM SET iResponse = 'MENU(-1)’

WHERE iID = 401,

-- motor:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (402, 4, 'Y, 'moY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (402, 904, 402, 8,
0.35, 0.23, 0.07, 0.08, 1);
UPDATE ITEM SET ilnitial = ™Motor"->$[EpR]->&FetchEpi’ WHERE ilD = 402;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Motor)’
WHERE iID = 402,

63Might we not always return the key into the RGNOBS table?

5 MENUS FOR THE ANALGESIA DATABASE 112

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (403, 4, °'N’, ’'moN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (403, 904, 403, 9,
0.44, 0.23, 0.07, 0.08, 1);
UPDATE ITEM SET ilnitial =
"'Motor"->$[EpR]->&FetchEpi->NOT’
WHERE iID = 403;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Motor)’
WHERE iID = 403;
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (404, 1, ’'motor’, 'mol’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (404, 904, 404, 7,
0.10, 0.23, 0.07, 0.08, 0);

-- pressure areas
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (405, 4, 'Y', ’prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (405, 904, 405, 12,
0.35, 0.33, 0.07, 0.08, 2);
UPDATE ITEM SET ilnitial =
"Pressure"->$[EpR]->&FetchEpi’ WHERE ilID = 405;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Pressure)’
WHERE iID = 405;
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (406, 4, °'N’, 'prN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (406, 904, 406, 13,
0.44, 0.33, 0.07, 0.08, 2);
UPDATE ITEM SET ilnitial =
"Pressure"->$[EpR]->&FetchEpi->NOT" WHERE ilD = 406;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Pressure)’
WHERE iID = 406;
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (407, 1, ‘’pressure’, ’prL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (407, 904, 407, 14,
0.10, 0.33, 0.07, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE

- level
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (408, 4, 'Y', 'blY");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (408, 904, 408, 15,
0.35, 0.43, 0.07, 0.08, 3);
UPDATE ITEM SET ilnitial =
"Level"->$[EpR]->&FetchEpi’ WHERE iID = 408;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Level)’
WHERE iID = 408;
-- 1 signals GOOD sensory block
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (409, 4, 'N’, 'bIN);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (409, 904, 409, 16,
0.44, 0.43, 0.07, 0.08, 3);
UPDATE ITEM SET ilnitial =
"evel"->$[EpR]->&FetchEpi->NOT’ WHERE ilD = 409;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Level)’
WHERE iID = 409;
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (410, 1, ‘’'level’, ’bIL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (410, 904, 410, 17,
0.10, 0.43, 0.07, 0.08, 0);
-- 0 signals inadequate sensory block

-- site
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (411, 4, 'Y, 'siY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (411, 904, 411, 18,
0.35, 0.53, 0.07, 0.08, 4);
UPDATE ITEM SET ilnitial =
"'Site"->$[EpR]->&FetchEpi’ WHERE iID = 411,
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Site)’
WHERE iID = 411;
-- 1 signals ’'site OK’
INSERT INTO ITEM (ilD, iType, iText, iName)

113

5 MENUS FOR THE ANALGESIA DATABASE 114

VALUES (412, 4, °'N’, ’siN);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (412, 904, 412, 19,
0.44, 0.53, 0.07, 0.08, 4);
UPDATE ITEM SET ilnitial =
"Site"->$[EpR]->&FetchEpi->NOT’ WHERE iID = 412;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Site)) WHERE ilID = 412;
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (413, 1, ‘'site’, ’siL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (413, 904, 413, 20,
0.10, 0.53, 0.07, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (414, 1, ‘'ok:’, ’okL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (414, 904, 414, 3,
0.001, 0.380, 0.13, 0.08, 7);

--mobility:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (428, 4, 'Y, ’'mbY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (428, 904, 428, 23,
0.35, 0.63, 0.07, 0.08, 5);
UPDATE ITEM SET ilnitial =
"Mobile"->$[EpR]->&FetchEpi’ WHERE iID = 428;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Mobile)’
WHERE iID = 428;

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (429, 4, °'N’, 'mbN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (429, 904, 429, 3,
0.44, 0.63, 0.07, 0.08, 5);
UPDATE ITEM SET ilnitial =
""Mobile"->$[EpR]->&FetchEpi->NOT" WHERE ilD = 429;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Mobile)’
WHERE iID = 429;
INSERT INTO ITEM (iID, iType, iText, iName)

5 MENUS FOR THE ANALGESIA DATABASE 115

VALUES (430, 1, ’'mobile’, ’'mbL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (430, 904, 430, 24,
0.10, 0.63, 0.07, 0.08, 0);

Here's FetchEpi:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (183,
"QUERY(SELECT rgo$[] FROM RGNOBS WHERE Epoch = $[))->
QOK->NOT->SKIP->RETURN->NULL',
'FetchEpi’);

Using the current epoch on the (epidural) insertion prodgsk, we obtain the
relevant epoch (Pressure, Site, Motor, or Level), and display it. Note the reciprocal
relationship between the Y and N buttons, which ideally should be implemented
by querying the state just oné&The latter part (QOK) returns NULL even if the
SQL query failed.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (184,
'SWOP->$[EpR]->
DOSQL(UPDATE RGNOBS SET rgo$[]=$[] WHERE Epoch = $[]),
'RecordEpi");

5.10.2 Detalils of the epidural infusion process

Next, numeric boxes (with their labels). We might later replace these with ‘cus-
tom widgets’ to facilitate easy numeric entry, but for now we pop up the system
keyboard! (iType = code 14). The PCEA process code is 310.

-- pcea good:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (2421, 1, ‘’doses’, 'gd’, ”, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2421, 904, 2421, 25,
0.55, 0.45, 0.200, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (422, 14, ", ’goodT’, ”, 1),

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)

64We haven't implemented messaging between buttons in the current version of the program.

5 MENUS FOR THE ANALGESIA DATABASE 116

VALUES (422, 904, 422, 26,
0.80, 0.45, 0.12, 0.08, 0);
UPDATE ITEM SET iResponse =
'INTEGER->"Good"->$[EpQ]->&PcaRecord’
WHERE iID = 422;
UPDATE ITEM SET ilnitial =
'$[pethidine]->NOT->SKIP->FAIL->$[prQ]->&pcAble->"Good"->$[EpQ]->&GetPca’
WHERE iID = 422;

-- pcea tries:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (419, 1, ‘'tries’, 'PtSrn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (419, 904, 419, 27,
0.60, 0.55, 0.200, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (420, 14, 7, ‘'tryT, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (420, 904, 420, 28,
0.80, 0.55, 0.12, 0.08, 0);
UPDATE ITEM SET iResponse =
'INTEGER->"Tries"->$[EpQ]->&PcaRecord’
WHERE iID = 420;
UPDATE ITEM SET ilnitial =
'$[prQ]->&pcAble->"Tries"->$[EpQ]->&GetPca’
WHERE iID = 420;

-- top-ups:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (417, 1, ’'Top-ups’, 'PtSrn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (417, 904, 417, 5,
0.53, 0.11, 0.200, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (418, 14, ", ‘'topuT’, ”, 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (418, 904, 418, 6,
0.80, 0.11, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse =
'INTEGER->&TopupSet” WHERE iID = 418;
UPDATE ITEM SET ilnitial = '&FindTopups’ WHERE iID = 418;

5 MENUS FOR THE ANALGESIA DATABASE 117

-- infusion rate:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (415, 1, ‘'Rate: ml/h’, 'PtSrn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (415, 904, 415, 3,
0.01, 0.11, 0.200, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (416, 14, ", ’'RateT, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

VALUES (416, 904, 416, 4,

0.33, 0.11, 0.15, 0.08, 0);

UPDATE ITEM SET iResponse =

'INTEGER->&InfuRateSet’ WHERE iID = 416;
UPDATE ITEM SET ilnitial = '&FindIinfuRate’ WHERE ilID = 416;

The following is customised to allow alterations if epidural pethidine is se-
lected as being infused:

UPDATE ITEM SET ilnitial =
'$[pethidine]->SKIP->RETURN(doses)->"dose(mg):"
WHERE iID = 2421,

In addition we have the alternative text box for the total dose (mg) value:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (2422, 14, ", ‘’goodT’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2422, 904, 2422, 3,
0.83, 0.45, 0.12, 0.08, 0);
UPDATE ITEM SET iResponse = 'INTEGER->&SetTotal’
WHERE iID = 2422;
UPDATE ITEM SET ilnitial =
'$[pethidine]->SKIP->FAIL->$[prQ]->&pcAble->$[EpQ]->&FindTotal’
WHERE iID = 2422,

If the infusionis pethidine, then only is the box created! The nature of the
epoch is quite different, for here we must use the RXOBS table to record the total
dose.

For the mix, we extract the options from the database. The process code for
epidural infusion is 210: we format the following to accommodate all infusions
(currently up to code 250).

5 MENUS FOR THE ANALGESIA DATABASE 118

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (423, 1, 'Mix, ");

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (423, 904, 423, 1,
0.03, 0.001, 0.15, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (424, 6, ", 'rgnli’, ->#1->&ByFormulation’);
--- epidural=1;
UPDATE ITEM SET ilnitial =
'‘&GetinfusionLabel’ WHERE iID = 424;
UPDATE ITEM SET iResponse =
'‘&EpidinfuSet” WHERE iID = 424;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (424, 904, 424, 2,
0.16, 0.01, 0.82, 0.08, 0);

Determining the infusion is mildly complex. When the user selects a particular
infusion (say ‘standard mix’), the program first looks for an epidural infusion
(with or without PCEA) in existence. If the infusion isn't documented as present,
then it's created. Otherwise the documented RX (see that table) is checked to see
whether the selected infusion is the same — if things have changed, then the user
must confirm this, and the program will thetopthe current infusion process and
establish a new one as specified. Conversely, if things are as before, we simply
store the selected process in the local varigin(@.

Next, we have to either obtain (if it exists) or create an epoch associated with
the infusion process. This value is then stored in the local variah@

If the user tries to enter a rate or other observation on the infusion process
before selecting the type of infusion, they should be gently asked to specify the
type of infusion first®

FindAdministration doesn't try to make a new infusion, merely locating an
old but active one. At present we limit this to an epidural infusion. This routine
takes three arguments off the stack — the patient, the lower process code, and the
upper one.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (1886,

65This may cause some irritation, but it’s pretty awful practice not to even check the drug being
infused!

5 MENUS FOR THE ANALGESIA DATABASE 119

'"QUERY(SELECT PROCESS.process FROM PROCESS
WHERE PROCESS.Person = $[]
AND PROCESS.rEnd IS NULL AND PROCESS.ProcType > $[]
AND PROCESS.ProcType < 9[])->
QOK->SKIP->RETURN(#0)->RETURN’,
'FindAdministration’);

CheckiInfusion checks for both an ordinary regional infusion process and a
PCA regional infusion, returning either zero or the process code for the infusion.
We submit nothing on the stack!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (248,
"X->#209->#251->&FindAdministration->
COPY->SAME(#0)->SKIP->RETURN->DISCARD->
X->#309->#351->&FindAdministration’,
'CheckInfusion’);

Next, FindInfuObs. Iff an infusion epoch exists which is greater than the
local variableEpL, then we return it, otherwise zero. We assume that the current
infusion process has already been storepr(@.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (187,
'$[EpL]->$[prQJ->
QUERY(SELECT EPOCH.epoch FROM EPOCH WHERE
EPOCH.epoch > $[] AND
EPOCH.Process = $[])->
QOK->SKIP->RETURN(#0)->RETURN’,

'FindInfuObs’);

Find InfuRate checks the relevant (non-zero) epoch for a rate value, and that’s
it.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (188,
"$[EpQ]->
QMANY(SELECT MAX(INFUSIONOBS.infusionobs) FROM INFUSIONOBS WHERE
INFUSIONOBS.Epoch = $[))->
QOK->SKIP->RETURN->
QUERY(SELECT INFUSIONOBS.inoRate FROM INFUSIONOBS WHERE
INFUSIONOBS.infusionobs = $[])->
DIV(#1000)’,

'FindInfuRate’);

5 MENUS FOR THE ANALGESIA DATABASE 120

We allow for multiple INFUSIONOBS on one epoch (if we're fiddling), se-
lecting the most recent! We also convert from microlitres per hour to ml per hour,
using integer arithmetic. The converseiguRateSet.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (189,
'$[EpQ]->SAME(#0)->NOT->SKIP->
=FailAndReload(Please select infusion Mix!)->
COPY->ISNUMBER->SKIP->=FailAndReload(Not a number)->
COPY->GREATER(#25)->NOT->SKIP->=FailAndReload(Too big)->
COPY->LESS(#0)->NOT->SKIP->=FailAndReload(What??)->
MUL(#1000)->BURY->
KEY (Infusionobs)->$[EpQ]->DIGUP->
DOSQL(INSERT INTO INFUSIONOBS(infusionobs,Epoch,inoRate)VALUES

(S00.30.$0))",

‘InfuRateSet’);

We multiply by one thousand to convert from ml/hour to microlitres/hr.

What about actually setting up the infusio®pid InfuSet does the job. Given
the type of (for now, epidural) infusion, we check for an existing infusion. If one
doesn’t exist, we branch off to create the new infusion process and associate the
drug with the infusion. We also create a new epoch on the infusion.

If the infusion exists, we make sure that the selected drug (mix) is the same.
If it isn’t, we confirm the change, branch off to stop the current infusion process,
create a new process, and then the infusion and epoch.

If the infusion exists and the drug is the same, we check for a recent epoch on
the process. If the epoch exists, we do nothing, as all is in order; otherwise we
create the new epoch.

Because of the convenient pairwise structure of our lists, we provide the drug
ID on the stack.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (190,
'$[prQ]->SAME(#0)->NOT->SKIP->=NewRgnProclnfu->
COPY->$[prQ]->

QUERY(SELECT RX.Drug FROM RX WHERE
RX.Process = $[])->
SAME->SKIP->=ChangeEpidinfusion->
$[EpQ]->SAME(#0)->SKIP->RETURN->
$[prQ]->&NewEpoch->SET(EpQ)’,

'EpidinfuSet);

NewRgnProcInfureceives the drug ID on the stack. We create a new infusion
process, attach to it an RX entry, and also make an epoch on the infusion (as
above).

5 MENUS FOR THE ANALGESIA DATABASE 121

The following was epidural-specific but has now been tailored to make it
generic for all PCA/infusions. This fix relies on the coding for regional proce-
dures being from 100 to 160, the code for associated infusions being exactly 100
higher, and the code f&?CA infusions 200 higher than the code for the regional
procedure (i.e. 100 above the plain infusion code).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (191,
'BURY->
$[prR]->QUERY(SELECT ProcType FROM PROCESS WHERE process = $[])->
COPY->SAME(#109)->NOT->SKIP->ADD(#1)->
ADD(#200)->
CONFIRM(Using PCA?)->SKIP->SUB(#100)->&NewProc->SET(prQ)->
KEY(Rx)->DIGUP->3$[prQ]->
DOSQL(INSERT INTO RX(rx,Drug,Process)
VALUES($[],$0.%[))->
$[prQ]->&NewEpoch->MENU(0)’,

'NewRgnProcInfu’);

The test for process type 109 is a search for a CSE process. If this is reported,
we regard the infusion as a simple ‘Epidural’ and code accordingly (codes 210
and 310 for non-PCEA or PCEA infusions respectivély).

At the end of the routine we reload the menu rather than just saying SET(EpQ)
because we then enable or disable the PCEA boxes as apprpriate.

The SKIP/SUB hack after the confirmation utilises our rather arbitrary con-
vention that the ID infusion process with PCA is one hundred higher than the 1D
of the process without PCA — the process code for an epidural infusion is 210
and for an epiduralith PCEAIs 310.

Here is the simplé\ewZEpoch, which might profitably be relocated elsewhere.
The process ID must be submitted on the stack, and is consumed. The routine
returns the new epoch ID on the stack.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (193,
'BURY->KEY (Epoch)->COPY->NOW->ME->DIGUP->
DOSQL(INSERT INTO EPOCH(epoch,oMade,Person,Process)
VALUES($[], TIMESTAMP "$[]",$[1,%[0))’,

'NewEpoch’);

66The ADD(#1) is an ugly hack and the adventurous might replace this with the untested RE-
PLACE(#110).

87Ultimately the best way of doing this would be by messages to the relevant boxes!

5 MENUS FOR THE ANALGESIA DATABASE 122

ChangeEpidinfusion receives thewdrug ID on the stack. By our own con-
vention, every time we change the drug being infused, we stop the current infusion
process, and create an entirely new one. We do so, and then create a new infusion.
Voila!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (192,
"CONFIRM(Alter infusion?)->
SKIP->=FailAndReload(Not changed!)->
$[prQ]->&KillProc->&NewRgnProclnfu’,

'ChangeEpidInfusion’);

GetInfusionLabelis simple, with one wrinkle — if there is no current epoch
(EpQ on the infusion process, it won't yet display the nature of the infusion. This
is a ‘safety’ (checking) feature, preventing bias.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (250,
'$[EpQ]->SAME(#0)->NOT->SKIP->RETURN(?)->
$[prQ]->
QUERY(SELECT DRUG.dTrade FROM RX,DRUG

WHERE RX.Process = $[] AND
RX.Drug = DRUG.drug)->QOK->SKIP->" "->COPY->
IN(Fentanyl)->SET (fentanyl)’,

'GetInfusionLabel’);

We look for the string “Fentanyl!” within the value to be returned, and if this is
present we set the fentanyl flag to #1.

TopupSet sets the number of topups, submitted on the stack. This can only be
one number for each EPOCH epoch, so if a current RXOBS exists for this process,
then we update it. We're looking at the epoch of the infusion prodes€)(not
the epidural one.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (196,

"COPY->ISNUMBER->SKIP->=FailAndReload(Number please)->
COPY->GREATER(#100)->NOT->SKIP->=FailAndReload(Too many?)->
COPY->LESS(#0)->NOT->SKIP->=FailAndReload(What?)->
$[EpQJ->SAME (#0)->
NOT->SKIP->=FailAndReload(Please first state mix)->
$[EpQ]->QUERY(SELECT RXOBS.rxobs FROM RXOBS WHERE

RXOBS.Epoch = $[])->
QOK->SKIP->&NewRxObs->
DOSQL(UPDATE RXOBS SET rxoDoses=$[] WHERE rxobs = $[]),
"TopupSet");

5 MENUS FOR THE ANALGESIA DATABASE 123

The subsidiary\ewRxObs creates just that, returning the ID of the new RXOBS
entry. The epoclEpQis assumed to exist.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (198,
’KEY(Rx0bs)->COPY->$[EpQ]->
DOSQL(INSERT INTO RXOBS(rxobs,Epoch)VALUES

(S0.30)',
'NewRxObs");

FindTopups locates an existing RXOBS on the current infusion process.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (197,
'$[EpQ]->
QUERY(SELECT RXOBS.rxoDoses FROM RXOBS
WHERE RXOBS.Epoch = $[])’,
'FindTopups’);

For PCEA, things are somewhat different from the above. On both getting/setting,
we submit the epoch ID on the top of the stack, with the parameter to alter/find ID
(or zero if nonexistent) below this.

In the case ofPcaRecord below these two is the actual observed value — here
we first test to make sure theigean epoch. We then validate the numeric epoch.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (199,
'COPY->SAME (#0)->
NOT->SKIP->=FailAndReload(Please state mix)->
BURY->BURY->
COPY->ISNUMBER->SKIP->=FailAndReload(A number please)->
COPY->GREATER(#999)->
NOT->SKIP->=FailAndReload(Too many)->
COPY->LESS(#0)->NOT->SKIP->=FailAndReload(What?)->
DIGUP->DIGUP->
QUERY(SELECT PCA.pca FROM PCA WHERE PCA.Epoch = $[])->
QOK->SKIP->&NewPca->
BURY->SWOP->DIGUP->
DOSQL(UPDATE PCA SET pco$[]=$[] WHERE PCA.pca = $[]),
'PcaRecord”);

The stack manipulation is fairly subtle. First we bury the epoch ID and nature
of the update, so we might check the datum. If this check comes out ok, we then
dig up the ID, and find the corresponding PCA table entry (or make one). Finally,
we bury the PCA table entry, swop the datum type and value, and then dig up the
entry id again!

The subsidiaryNewPca resembles\ewRxObs. We even (??7?) assunepQ
is filled. It returns the new ID value.

5 MENUS FOR THE ANALGESIA DATABASE 124

INSERT INTO FUN (fKey, fBody, fName)

VALUES (201,

'KEY(Pca)->COPY->$[EpQ]->

DOSQL(INSERT INTO PCA(pca,Epoch)VALUES($[],$[]))’,
'NewPca);

GetPcais both ugly and trivial.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (200,

'QUERY(SELECT PCA.pco$[] FROM PCA WHERE PCA.Epoch = $[])’,
'‘GetPca’);

pcAble tests whether the submitted process (on the stack) is a PCA-associated
process. If so, the item associated with the script is enabled, otherwise (by default)
disabled.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (202,
'"QUERY(SELECT PROCESS.ProcType FROM PROCESS

WHERE PROCESS.process = $[))->

QOK->SKIP->#0->
COPY->BURY->GREATER(#299)->DIGUP->
LESS(#400)->AND->ENABLED’,

'pcAble’);

If no process is found, we insert a zero, forcing ‘disabling’. Our final contri-
bution to the regional menu is a button to permit toggling between PCEA and no
PCEA:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (425, 2, 'PCA is off, ‘’tglp’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (425, 904, 425, 35,
0.60, 0.32, 0.35, 0.10, 0, ’yellow’, 'black’);
UPDATE ITEM SET iResponse = ’'&TogglePcea’ WHERE iID = 425;
UPDATE ITEM SET ilnitial =
‘&lsltPcra->SKIP->RETURN->"PCA is on™
WHERE iID = 425;

INSERT INTO FUN (fKey, fBody, fName)
VALUES (203,
'$[prQ]->QUERY(SELECT PROCESS.ProcType FROM PROCESS
WHERE PROCESS.process = $[))->
QOK->SKIP->RETURN(#0)->
COPY->GREATER(#299)->SWOP->LESS(#351)->AND’,
'IsltPcra’);

5 MENUS FOR THE ANALGESIA DATABASE 125

The above was specific for PCEA but now covers all regional infusions (pro-
cess type codes 300-350) so has been renamed from ‘IsltPcea’ to IsltPcra! QOK
tests for success of the query, returning ‘no’ if no process found; the remaining
code checks that the type is both over 299 AND under 351.

TogglePcea despite the label goes through the whole rigmarole of confirming
a change and asking yes/no. The label on the button is simply a hint! We find the
current drug and submit it tBlewRgnProcInfu.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (204,
'$[prQ]->QUERY(SELECT RX.Drug FROM RX WHERE RX.Process = $[])->
QOK->SKIP->=Fail(Select Mix!)->
&ChangeEpidInfusion’,

"TogglePcea);

The following ‘hypotension-related’ buttons are fleshed out in a later menu,
but we define them here. Note the importance of having a distinct, identical mi-
Group value for the two buttons:

-- hypotension:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (704, 4, 'Y', 'bpY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (432, 904, 704, 20,
0.45, 0.88, 0.07, 0.08, 9);
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (705, 4, 'N’, ’'bpN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (433, 904, 705, 21,
0.55, 0.88, 0.07, 0.08, 9);
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (706, 1, ’low BP’, ’'bpL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (434, 904, 706, 22,
0.45, 0.78, 0.26, 0.08, 0);
UPDATE ITEM SET ilnitial =
'#1120->&FetchProblem’ WHERE ilD = 704;
UPDATE ITEM SET iResponse =
'#1120->&SpawnProblem->#1->&SetProblem’
WHERE iID = 704,

UPDATE ITEM SET ilnitial =
'#1120->&FetchProblem->QOK->SKIP->#1->BOOLEAN->NOT’

5 MENUS FOR THE ANALGESIA DATABASE 126

WHERE iID = 705;

UPDATE ITEM SET iResponse =
'#1120->&SpawnProblem->#0->&SetProblem’
WHERE iID = 705;

A final few buttons, to stop the infusion, and even remove the epidural (which
can also be signalled by clicking ‘N’ in the preceding menu).

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (426, 2, ’'End infusion’, ’'noinf, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (426, 904, 426, 37,
0.03, 0.80, 0.35, 0.08, 0, 'yellow’, ’'black’);
UPDATE ITEM SET iResponse = '&Stoplinfusion->MENU(0)’ WHERE iID = 426;

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (427, 2, ’Regional out’, ’epout’, ”, 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (427, 904, 427, 38,
0.03, 0.90, 0.35, 0.08, 0, ’yellow’, ’black’);
UPDATE ITEM SET iResponse =
'#104->#151->&ConsiderStopping’ WHERE ilID = 427,

-- day count:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (431, 1, 'D 7, 'd, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (431, 904, 431, 20,
0.76, 0.80, 0.10, 0.08, 0);
UPDATE ITEM SET ilnitial = '$[prR]->&CountDays->"Day $[]" WHERE ilD = 431,

Here’s theCountDays routine which, given a process, determines the integer
number of days since the start of the process. Partial days aren’t counted.

INSERT INTO FUN (fKey, fBody, fName)VALUES(264,
'QUERY(SELECT rStart FROM PROCESS WHERE process = 3[])->
TIMESTAMP->FLOAT->
NOW->FLOAT->SWOP->SUB->
INTEGER,
'CountDays’);

Here'sStopInfusion:

5 MENUS FOR THE ANALGESIA DATABASE 127

INSERT INTO FUN (fKey, fBody, fName)
VALUES (206,
'$[prQ]->SAME(#0)->NOT->SKIP->=Fail(No infusion)->
CONFIRM(End infusion?)->SKIP->=FailAndReload(Not stopped)->
$[prQJ->&KillProc->ALERT(Stopped)’,

'StoplInfusion’);

5.10.3 Entering Details of the Regional Process

In the preceding text we've glossed over an important component: selecting the
nature of the regional infusion. We've rather concentrated on epidurals, but we
need to accommodate other regional infusions within our framework!

In the selection menu we must:

1. specify the type of infusion (e.g. epidural, sciatic nerve)
2. Confirm our choice, or cancel

3. Possibly specify other details of the infusion (later even have an optional
comment; for now we limit things to further epidural details including catheter
mark at skin in cm, and level of epidural).

Ultimately we should also make these data available on the actual regional
menu.
[FIX THE FOLLOWING]

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (910, 20, 'Regional data’, 'STARTREG);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (910, 910, 910, 0,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO ITEM (iID, iType, iText, iName, iList)
VALUES (1102, 6, ”, 'md,
->&GetRegionalModes’);

UPDATE ITEM SET iResponse = 'SET(rmode)’

WHERE iID = 1102;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1102, 910, 1102, 3,
0.07, 0.20, 0.85, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE 128

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1103, 1, ’'modality:’, ’'mdlbl’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1103, 910, 1103, 4,
0.03, 0.05, 0.10, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1104, 1, ‘date in’, ’'mdat);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1104, 910, 1104, 5,
0.03, 0.40, 0.10, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1105, 12, ", ‘’date:);
-- type is 12 for date picker!
UPDATE ITEM SET ilnitial =
'NOW->SPLIT()->DISCARD’ WHERE ilD = 1105;
UPDATE ITEM SET iResponse = 'SET(rdate) WHERE ilD = 1105;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1105, 910, 1105, 4,
0.25, 0.40, 0.40, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1100, 2, ‘’Abort’, ‘’abrt’, ”, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (1100, 910, 1100, 10,

0.05, 0.900, 0.200, 0.08, 0, 'green’, 'white’);

UPDATE ITEM SET iResponse = 'MENU(#1)’

WHERE iID = 1100;
-- abort

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1101, 2, 'OK’ ok, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1101, 910, 1101, 10,
0.750, 0.900, 0.200, 0.08, O, 'green’, 'white’);
-- OK button

Let’s initialise the menu:

5 MENUS FOR THE ANALGESIA DATABASE 129

UPDATE ITEM SET ilnitial =
'NAME (EpL)->#1->X->&LastEpoch->SET(EpL)->NAME(rmode)->
NAME(rdate)->NOW->SPLIT()->DISCARD->SET(rdate)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])’
WHERE iID = 910;

Here’s the response to clicking on the ‘OK’ button. We need to unload the
current menu before we move to the regional one.

UPDATE ITEM SET iResponse =
'$[rmode]->ISNULL->NOT->SKIP->=FailAndReload(Please select type of regional)->
POPMENU(#0)->DISCARD->DISCARD->
$[rmode]->SAME(#100)->NOT->SKIP->=NoteSpinal->
$[rmode]->SAME(#101)->NOT->SKIP->=NoteSpinal->
X->$[rmode]->$[rdate]->"$[] 00:00:00"->&DatedProc->
MENU(REGIONAL)’
WHERE iID = 1101;

Spinals are handled differently from all other processes. Whether the spinal is
with or without morphine (codes 101 and 100 respectively) we make a note of the
spinal and daot proceed to the regional menu.

At present we force the default time of insertion to 00:00:00, but we might of
course insert a time field as well. The variable rmode contains the process type
code for the regional. We use this to create a new process, and then enter the
REGIONAL menu.

We need a routine to identify the various modes of regional infusion. Here
they are (specified amccessather than infusion, which is separate).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (247,
'"QMANY(SELECT proctype,rptNature FROM PROCTYPE WHERE
proctype > 99 AND proctype < 151),

'GetRegionalModes’);

Code 109 is CSE, 110 is Epidural, and 120-150 are various regional catheter
modalities®® Code 115 is a spinal infusion (sometimes used to good effect for pal-
liative care patients). We now also include the special case of a single shot spinal
(code 100) but need to handle this differently (Immediately close the process; have
a check menu pop up after 24 houf$).

Here’s the routine to record the single-shot spinal. We generate a process code,
use X as the person, and fetatate as the date, turning it into a timestamp.

%8\We have established the convention that access+100 = infusion code!

89l rather arbitrary, and possibly better served by attaching a more generic process to an
anatomical site?!

0To exclude the single shot spinal, use proctyp&04 rather than 99.

5 MENUS FOR THE ANALGESIA DATABASE 130

INSERT INTO FUN (fKey, fBody, fName)
VALUES (194,
'KEY (Process)->X->$[rdate]->"$[] 00:00:00"->now->now->me->#100->
DOSQL(INSERT INTO PROCESS
(process,Person,rStart,rCreated,rEnd,rPlanner,ProcType)
VALUES($[],$[. TIMESTAMP "$[]",TIMESTAMP "$[]", TIMESTAMP "$[]",$[],$[]))->
X->#99->$[rdate]->"$[] 00:00:00"->&DatedProc->
Alert(To check at +24hr!)->MENU(0)’,

'NoteSpinal’);

We immediately terminate the process (spinal is code 100) by specifying'tEnd.

5.11 IV PCA menu (914)

Figure 11: IV PCA menu

The IV PCA menu has some resemblance to the Epidural menu, and is loosely
based on this.

First we create the main menu. We use the same ‘Done’ button from the
epidural menu, and also have a ‘Remove PCA button.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (914, 20, 'lV PCA’, 'IVPCAY;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (914, 914, 914, 12,
0.000, 0.200, 0.999, 0.999, 0);

"IA refinement might be to check whether the ‘24 hour check’ is now due, and pop it up if this
is the case! Easiest to modify 1s24 appropriately, then test/skip using Is24.

5 MENUS FOR THE ANALGESIA DATABASE 131

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1401, 914, 401, 39,
0.750, 0.900, 0.200, 0.08, 0, 'green’, 'white’);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1427, 2, 'Remove PCA’, ‘’epout’, ”, 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (1427, 914, 1427, 40,

0.03, 0.90, 0.35, 0.08, 0, ’yellow’, ’black’);

UPDATE ITEM SET iResponse =

'#389->#391->&ConsiderStopping’ WHERE ilID = 1427;

We initialise as follows. The process code for IV PCA is 390. SetEvent(2)
records our recent entry into the menu.

UPDATE ITEM SET ilnitial =

'NAME(EpL)->

NAME(prQ)->NAME(EpQ)->

NAME (fentanyl)->#0->SET (fentanyl)->
#1->X->&LastEpoch->SET(EpL)->
X->#389->#391->&FindAdministration->SET(prQ)->
&SetEvent(#2)->
&FindInfuObs->SET(EpQ)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])
WHERE iID = 914;

FindInfuObs relies on the presence of the variables prQ and EpL, which are
the current infusion process and the most recent general observation, respectively.
We need the NAME(fentanyl), for if this fentanyl variable is set to #1, then units
are micrograms and not milligrams.

In the above weassumethat prior to entry to the menu, if a PCA infusion
doesn’t exist, the user has confirmed the starting of such an infusion!

GolvPca niggles if the user has already said ‘no’ (Hmm, get rid of this or
modify it), then enters the menu if the process exists, otherwise confirms that the
user wishes to make the process, and does so.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (207,
"X->#389->#391->&FindAdministration->
BOOLEAN->NOT->SKIP->MENU(IVPCA)->
MENU(STARTIVPCAY',

'GolvPca’);

5 MENUS FOR THE ANALGESIA DATABASE 132

Here are boxes related to PCA attempts and doses, as well as the total, and the
popup for the ‘Mix’.

-- pcea good:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1421, 1, ’'doses’, 'gd’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1421, 914, 1421, 2,
0.01, 0.21, 0.120, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1422, 14, ”, ‘’'doseP’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1422, 914, 1422, 3,
0.17, 0.21, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse =
'INTEGER->"Good"->$[EpQ]->&PcaRecord’
WHERE iID = 1422,
UPDATE ITEM SET ilnitial =
"Good"->$[EpQ]->&GetPca’ WHERE iID = 1422;

-- pea tries:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1419, 1, ‘tries’, 'PtSm’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1419, 914, 1419, 4,
0.34, 0.21, 0.120, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1420, 14, ", ‘'tyT, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1420, 914, 1420, 5,
0.49, 0.21, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse =
'INTEGER->"Tries"->$[EpQ]->&PcaRecord’
WHERE iID = 1420;
UPDATE ITEM SET ilnitial =
"Tries"->$[EpQ]->&GetPca’ WHERE ilID = 1420;
-- will always be enabled

-- total

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1417, 1, 'Total’, ‘'tot’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

5 MENUS FOR THE ANALGESIA DATABASE 133

miX, miY, miwW, miH, miGroup)
VALUES (1417, 914, 1417, 6,
0.66, 0.21, 0.120, 0.08, 0);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1434, 1, ’'(mg/mcg), ‘gd, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1434, 914, 1434, 7,
0.66, 0.29, 0.120, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1418, 14, ", ‘'totT’, ", 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1418, 914, 1418, 8,
0.82, 0.21, 0.14, 0.08, 0);
UPDATE ITEM SET iResponse = '&ToMicrograms->INTEGER->&SetTotal’ WHERE iID = 1418;

Here’s the initialisation of the Total. We don’t want to populate it with any-
thing if FindTotal fails.

UPDATE ITEM SET ilnitial =
'$[EpQ]->&FindTotal->&FromMicrograms’
WHERE iID = 1418;

We continue ...

-- basal infusion rate:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1415, 1, ’'Basal: ML/n’, 'PtSmn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1415, 914, 1415, 30,
0.45, 0.70, 0.15, 0.08, 0);

-- if latter need to alter the units dynamically!!

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1416, 14, ", ’'RateB’, ", 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1416, 914, 1416, 31,
0.82, 0.70, 0.12, 0.08, 0);
UPDATE ITEM SET iResponse =
'INTEGER->&InfuRateSet’ WHERE iID = 1416;
UPDATE ITEM SET ilnitial =
'&FindInfuRate’ WHERE iID = 1416;

5 MENUS FOR THE ANALGESIA DATABASE

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1423, 1, 'Mix, ");
-- might even use epi 'Mix’ item?

INSERT INTO MENUITEMS (miUid, miMenu, miltem,
miX, miY, miW, miH, miGroup)
VALUES (1423, 914, 1423, 1,
0.03, 0.001, 0.15, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (1424, 6, ", ’'pcai’, '->#1->&ListDrugs’);
-- code for PCA in DRUGUSAGE table is 1.
UPDATE ITEM SET ilnitial =
'&GetinfusionLabel’ WHERE iID = 1424;
UPDATE ITEM SET iResponse =
‘&lvinfuSet’ WHERE iID = 1424;

INSERT INTO MENUITEMS (miUid, miMenu, miltem,
miX, miY, miW, miH, miGroup)
VALUES (1424, 914, 1424, 2,
0.16, 0.01, 0.82, 0.08, 0);

-- nausea (also used later in summary menu):
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (707, 4, 'Y, 'nvY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem,
miX, miY, miW, miH, miGroup)
VALUES (1425, 914, 707, 26,
0.22, 0.69, 0.07, 0.08, 3);
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (708, 4, °'N’, ’'nvNY);
INSERT INTO MENUITEMS (miUid, miMenu, miltem,
miX, miY, miW, miH, miGroup)
VALUES (1426, 914, 708, 27,
0.31, 0.69, 0.07, 0.08, 3);
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (709, 1, ‘’nausea’, ’nvL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem,
miX, miY, miwW, miH, miGroup)
VALUES (1429, 914, 709, 28,
0.03, 0.69, 0.12, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (716, 2, ’nausea Rx’, 'nvL’);
UPDATE ITEM SET iResponse =

134

miOrder,

miOrder,

miOrder,

miOrder,

miOrder,

5 MENUS FOR THE ANALGESIA DATABASE 135

'MENU(NAUSEA) WHERE iID = 716;

-- do NOT enable the following [find the bug first!]

--INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
-- miX, miY, miw, miH, miGroup)

-- VALUES (1428, 914, 716, 3,

- 0.05, 0.75, 0.33, 0.08, 0);

UPDATE ITEM SET ilnitial =
'#1130->&FetchProblem’ WHERE iID = 707;

UPDATE ITEM SET iResponse =
'#1130->&SpawnProblem->#1->&SetProblenm’
WHERE ilID = 707,

UPDATE ITEM SET ilnitial =
'#1130->&FetchProblem->QOK->SKIP->#1->BOOLEAN->NOT’
WHERE iID = 708;

UPDATE ITEM SET iResponse =
'#1130->&SpawnProblem->#0->&SetProblem’

WHERE iID = 708;

finally, bolus and lockout values:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1431, 1, ’'Bolus’, ’'gd, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1431, 914, 1431, 15,
0.01, 0.45, 0.120, 0.08, 0);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1433, 1, ’'(mg/mcg), 'gd’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1433, 914, 1433, 16,
0.01, 0.54, 0.120, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1432, 14, ”, ‘’bolP’, ”, 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1432, 914, 1432, 17,
0.17, 0.45, 0.20, 0.08, 0);

Here’s how we record PCA Dose settings.

UPDATE ITEM SET iResponse =
'‘&ToMicrograms->INTEGER->
"Dose"->$[EpQ]->&PcaNoteSettings’
WHERE ilID = 1432;

5 MENUS FOR THE ANALGESIA DATABASE 136

Because we variably enter doses in micrograms (for fentanyl) or milligrams
(for everything else) but always recondicrograms we need to be able to con-
vert to micrograms (where needed) prior to storing a number. Here’s the routine,
which is complicated by the possibility that a value of eg 0.5 has been entered.
So we need to convert to a float, multiply, and then convert back to an irifeger.
This routine assumes that the variable $[fentanyl] exists, and that a number is sup-
plied on the stack. We return a float, which must subsequently be converted to an
integer. (In the case of fentanyl we return the type which was input).

INSERT INTO FUN (fKey, fBody, fName)
VALUES (273,
‘$[fentanyl]->NOT->SKIP->RETURN->
FLOAT->FLOAT(1000)->MUL’,

"ToMicrograms’);

Here’s the converse routine. The shenanigans at the end are because on the
PDA 0.5 is unacceptably rendered “5.000000e-1".

INSERT INTO FUN (fKey, fBody, fName)
VALUES (274,
"COPY->ISNULL->NOT->SKIP->RETURN->
$[fentanyl]->NOT->SKIP->RETURN->
FLOAT->FLOAT(1000)->DIV->COPY->
FLOAT(1.0)->LESS->NOT->SKIP->=TrimFloat->
INTEGER’,

'FromMicrograms’);

We return NULL if the submitted value is NULL. If the value is 1 or more,
then we turn it into an integér. If the value is under 1.0, then we trim the float as
follows:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (275,
'FLOAT(10)->MUL->INTEGER->"0.$[]",
'"TrimFloat’);

The above will never be applied to fentanyl dosing, but e.g. 5.000000000e-1
will become 0.5.

Here’s the initialisation of the PCA bolus dose setting whetenMicrograms
is used. We perform the reverse of the preceding, dividing by 100&€sswe’re
dealing with fentanyl! [NOTE THAT AT PRESENT on the PDA we are reduced
to blasted scientific notation. Need to convert 5.00000e-1 to 0.5 !!]

2Once we've got our fixed point routines working, things will be considerably easier!
3We truncate e.g. 1.5 mg. This might withstand a gentle rewrite!

5 MENUS FOR THE ANALGESIA DATABASE 137

UPDATE ITEM SET ilnitial =
"Dose"->$[EpQ]->&GetPcaSet->
&FromMicrograms’ WHERE iID = 1432;

We continue ...
-- pca tries:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1439, 1, ’lockout (min)’, ’IkL’, ”, 1)

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1439, 914, 1439, 18,
0.45, 0.45, 0.120, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1440, 14, 7, kT, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1440, 914, 1440, 19,
0.82, 0.45, 0.12, 0.08, 0);

UPDATE ITEM SET iResponse =
'FLOAT->FLOAT(60)->MUL->INTEGER->"Lockout"->$[EpQ]->&PcaNoteSettings’
WHERE iID = 1440;

UPDATE ITEM SET ilnitial =
"Lockout"->$[EpQ]->&GetPcaSet->COPY->ISNULL->SKIP->DIV(#60)’
WHERE iID = 1440;

We multiply the value by 60 for the Lockout setting above, as lockout is
recorded in seconds but entered in minutes. The reverse must be performed on
retrieving the value.

IvInfuSet is distressingly similar t&EpidInfuSet, and ultimately we might
aim for a common routine. The difference is that with the latter, we have no
certainty that an infusion already exists but with this routine we have already con-
firmed the presence of PCA. We still may not know the type of infusion, however!
We have the ID of the drug on the stack.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (208,
'COPY->
COPY->SAME(#122)->SET (fentanyl)->
$[prQ]->
QUERY(SELECT RX.Drug FROM RX WHERE
RX.Process = $[])->
QOK->SKIP->=NewlvDrug->
SAME->SKIP->=Changelvinfusion->
DISCARD->
$[EpQ]->SAME#0)->SKIP->RETURN->

5 MENUS FOR THE ANALGESIA DATABASE 138

$[prQ]->&NewEpoch->SET(EpQ)’,

‘IvinfuSet’);

First of all we find the ID of the drug, and make a copy of this ID. The
SAME(#122) is something of a hack, as this is the code for fentdnyl.

We then test whether a drug is attached to the IV PCA process. If not, we
branch off and attach the drug usid@¢wIvDrug.”

Otherwise, we compare the attached drug with the copy of our current drug. If
they're not the same, we alter the infusiatigngeIvinfusion, using the original
copy of the drug ID still on the stack.

Lastly we ensure that the currrent epoch (EpQ) on the infusion process exists,
for if it doesn’t we have to create a new epoch on that process!

NewIvDrug accepts a drug ID on the stack, and creates an RX entry which
refers to the process prQ. It also attaches a new epoch to the process.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (209,
'BURY->KEY(Rx)->DIGUP->$[prQ]->
DOSQL(INSERT INTO RX(rx,Drug,Process)
VALUES($[],$0.%0))->
$[prQ]->&NewEpoch->SET(EpQ)’,

'NewlvDrug’);

Here’s ChangelvInfusion followed by NewIvInfuProc. The former simply
confirms the change, the latter is more involved.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (210,
'CONFIRM(Alter infusion?)->
SKIP->=FailAndReload(Not changed!)->
$[prQl->&KillProc->&NewlvinfuProc->
MENU(#0)’,

‘Changelvinfusion’);

NewIvInfuProc accepts the ID of the drug on the stack. A new process is
created, followed by a call dewIvDrug. The following is all related specifically

to PCA, rather than any old IV infusion.
hypertargetNewlvinfuProc

"4Such hard-coding is a really bad idea!
5A spare copy of the drug ID is left on the stack afterwards. This is ugly.

5 MENUS FOR THE ANALGESIA DATABASE 139

INSERT INTO FUN (fKey, fBody, fName)
VALUES (211,
'&NewProc(#390)->SET(prQ)->
&NewlvDrug’,

'NewlvinfuProc’);

The code for IV PCA is 390.

5.11.1 Noting the PCA settings

Similar to PecaRecord is PeaNoteSettings'® At present we only write to the pso-
Dose and psoLockout fields in the PCASETTINGS table. [We need more diligent
checks on the values input — FIX ME, even have separate table to describe these].

INSERT INTO FUN (fKey, fBody, fName)
VALUES (212,
'COPY->SAME(#0)->NOT->SKIP->=FailAndReload(Please state mix)->
BURY->BURY->
COPY->ISNUMBER->SKIP->=FailAndReload(A number please)->
DIGUP->DIGUP->
QUERY(SELECT PCASETTINGS.pcasettings FROM PCASETTINGS
WHERE PCASETTINGS.Epoch = $[])->
QOK->SKIP->&NewPcaSet->
BURY->SWOP->DIGUP->
DOSQL(UPDATE PCASETTINGS SET pse$[=$[]
WHERE PCASETTINGS.pcasettings = $[])’,
'PcaNoteSettings’);

[WE MUST FIX THE ABOVE. pseDose should be in micrograms, pseLock-
out in seconds!]
NewPcaSet resembles\ewPca.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (213,

'KEY (Pcasettings)->COPY->$[EpQ]->

DOSQL(INSERT INTO PCASETTINGS(pcasettings,Epoch)VALUES($[,$0))’,
'NewPcaSet);

Likewise Get®Pca and GetPcaSet.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (214,
'QUERY(SELECT PCASETTINGS.pse$[]] FROM PCASETTINGS
WHERE PCASETTINGS.Epoch = $[])->QOK->SKIP->NULL’,
'‘GetPcaSet);

’60ne is almost tempted to merge the the PCA and PCASETTINGS tables into one.

5 MENUS FOR THE ANALGESIA DATABASE 140

For totals, the eponymou&indTotal. This accepts the relevant epoch to which
the RXOBS refers:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (215,
'QUERY(SELECT RXOBS.rxoTotal FROM RXOBS
WHERE RXOBS.Epoch = $[])->QOK->SKIP->NULL’,

'FindTotal’);

We return NULL if the query failed.

SetTotalis a little more convoluted, and assumes that EpQ is the epoch. The
value is on the stack. If an RXOBS entry doesn’t exist and the SQL therefore fails,
we create an entry.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (216,

'$[EpQ]->SAME(#0)->NOT->SKIP->=Fail(Select Mix)->
COPY->ISNUMBER->SKIP->=Fail(Number please)->
$[EpQJ->QUERY(SELECT rxobs FROM RXOBS WHERE Epoch = $[])->
QOK->SKIP->=SetNewTotal->DISCARD->

$[EpQ]->
DOSQL(UPDATE RXOBS SET rxoTotal=$[] WHERE
Epoch = $[])->

QOK->SKIP->&Fail(Failed to set total)->RETURN’,

'SetTotal’);

Given the new value on the top of the stack and the epoch ID in EpQ, insert a
new total Rx value usingetNewTotal:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (251,
'BURY->KEY (Rxobs)->$[EpQ]->DIGUP->
DOSQL(INSERT INTO RXOBS(rxobs,Epoch,rxoTotal)VALUES
(S0.$00.%0)),

'SetNewTotal’);

5.12 Start menu for PCA (913)

It's desirable to be able to specify a different start date from ‘now’, and this is the
sole justification for the menu:

"TA clumsiness is the value left on the stack if the entry does exist!

5 MENUS FOR THE ANALGESIA DATABASE

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (913, 20, 'Start IV PCA’, 'STARTIVPCAY);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (913, 913, 913, 0,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1302, 1, 'Start IV PCA?’, 'I;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1302, 913, 1302, 0,
0.25, 0.15, 0.50, 0.08, 0);

-- 1104 is ’date in"
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1304, 913, 1104, 5,
0.03, 0.42, 0.10, 0.08, 0);

-- 1105 is a date picker, as for epidural:
-- we use the $[rdate] variable.
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1305, 913, 1105, 4,
0.25, 0.40, 0.40, 0.08, 0);

-- 1100 is an ’'Abort’ button:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1300, 913, 1100, 10,
0.05, 0.900, 0.200, 0.08, 0, 'green’, 'white’);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1301, 2, 'OK, ’ok’, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1301, 913, 1301, 10,
0.750, 0.900, 0.200, 0.08, 0, ’'green’, 'white’);
-- OK button

Let’s initialise the menu:

UPDATE ITEM SET ilnitial =
'NAME (rdate)->NOW->SPLIT()->DISCARD->SET(rdate)->

141

5 MENUS FOR THE ANALGESIA DATABASE 142

X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])
WHERE iID = 913;

Here’s the response to clicking on the ‘OK’ button. We need to unload the
current menu before we move to the regional one.

UPDATE ITEM SET iResponse =
'POPMENU(#0)->DISCARD->DISCARD->
X->#390->$[rdate]->"$[] 00:00:00"->&DatedProc->
MENU(IVPCA)’
WHERE iID = 1301;

5.13 Oral therapy menu (915)

Technically this isenteralrather than oral therapy, as we will also cover aspects
such as nasogastric and nasojejunal administration of drugs. At present we cover
these all under the rubric of ‘oral’ (process code 50) but this approach would
benefit from revision.

Figure 12: Oral therapy

Let's create a menu with a ‘Done’ button, and a ‘Stop ALL' button:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (915, 20, 'Orals’, 'ORALS’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (915, 915, 915, 12,
0.000, 0.001, 0.999, 0.999, 0);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

5 MENUS FOR THE ANALGESIA DATABASE 143

miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1501, 915, 401, 2,
0.750, 0.900, 0.200, 0.08, O, 'green’, 'white’);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1502, 2, ’'Stop ALL orals’, ‘’epout’, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup, miPaper, milnk)
VALUES (1502, 915, 1502, 2,
0.03, 0.90, 0.48, 0.08, 0, 'yellow’, ’black’);
UPDATE ITEM SET iResponse =
'#49->#51->&ConsiderStopping’ WHERE iID = 1502;

We initialise by determining the most recent general observation for this pa-
tient, that is we find the start of the current epoch. SetEvent(3) records our recent
entry into the Orals menu.

UPDATE ITEM SET ilnitial =
'NAME(EpL)->
#1->X->&LastEpoch->SET(EpL)->&SetEvent(#3)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])’
WHERE iID = 915;

We also need to be able to enter the ORALS menu. Here’s the routine. Re-
member that oral therapy is process code 50 (between 49 and 51).
INSERT INTO FUN (fKey, fBody, fName)
VALUES (218,
X->#49->#51->&FindAdministration->
BOOLEAN->NOT->SKIP->MENU(ORALS)->
CONFIRM(On orals?)->SKIP->=FailAndReload(No!)->
MENU(ORALS)’,

'GoOrals”);
Next we need to insert controls to process the following:

1. A list of current oral drugs, each with an associated tick box (KISS)
2. Ability to remove a drug from the list by simply clicking on the name

3. Ability to add another drug by selecting a drug from a list

5 MENUS FOR THE ANALGESIA DATABASE 144

5.13.1 Alist of oral drugs

INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (1508,8,'[No current Rx]',’PoRx’,8);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1512, 2, 'Nam’),
(1510, 14, ‘tot’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (1508, 915, 1508, 0, 0.001, 0.12, 0.95, 0.74);

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,

irName, irFraction, irEnabled)

VALUES (1512, 1508, 1512, 1, 'Drug’, 0.70, 1),
(1510, 1508, 1510, 2, 'mg in 24h’, 0.29, 1);

UPDATE ITEM SET ilnitial = 'X->#49->#51->&GetDrugProcs’ WHERE iID = 1508;

Here’s theGetDrugProcs routine. Note the similarity tProcBetween but this
routine returns a list rather than the first hit!

INSERT INTO FUN (fKey, fBody, fName) VALUES (220,

'"QMANY(SELECT PROCESS.process FROM PROCESS WHERE
PROCESS.rEnd IS NULL AND
PROCESS.Person = $[] AND
PROCESS.ProcType > $[] AND
PROCESS.ProcType < $[]),

'GetDrugProcs’);

We also need to initialise the components:

UPDATE ITEM SET ilnitial = 'V->&GetTradeName’
WHERE ilD = 1512;

GetTradeqName allows us to determine the trade name, given the process to
which the drug is attached.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (231,
'"QUERY(SELECT DRUG.dTrade FROM RX,DRUG
WHERE RX.Process = $[] AND
RX.Drug = DRUG.drug)’,
'‘GetTradeName’);

5 MENUS FOR THE ANALGESIA DATABASE 145

And respond to a click on the name button by giving the opportunity to stop
the drug:

UPDATE ITEM SET iResponse = 'V->&AskStopDrug’
WHERE ilID = 1512;

AskStopDruyg is a response to clicking on a drug-named button.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (232,
'QUERY(SELECT DRUG.dTrade FROM RX,DRUG
WHERE RX.Process = $[] AND
RX.Drug = DRUG.drug)->
CONFIRM(Stop the 3[]?)->
SKIP->RETURN->
NOW->V->DOSQL(UPDATE PROCESS SET rEnd=TIMESTAMP "3[]”
WHERE PROCESS.process = $[])->
MENU(0)',
'AskStopDrug’);

We don't fill in any values, but the existence of the epoch tells us that therapy
was given today?

Here'sNewRxObs2, which should be renamed. It accepts a process ID on the
stack and returns the corresponding RxObs ID, or if none exists, makes one and
returns it.

INSERT INTO FUN (fKey, fBody, fName) VALUES (223,

'COPY->$[EpL]->

QMANY(SELECT MAX(EPOCH.epoch) FROM EPOCH WHERE EPOCH.Process = $[]
AND EPOCH.epoch > 3$[])->

QOK->SKIP->&FancyEpoch->

COPY->QUERY(SELECT RXOBS.rxobs FROM RXOBS
WHERE RXOBS.Epoch = $[])->

QOK->NOT->SKIP->RETURN->

BURY->KEY(Rxobs)->COPY->DIGUP->

DOSQL(INSERT INTO RXOBS(rxobs,Epoch)
VALUES($[],$00))’

'NewRxObs2");

This routine is nasty as it returns a ragged stack — if there is already an
RXOBS then the copy of the EPOCH is left below this. Hmm.

8Hmm. what if we cancel this??

5 MENUS FOR THE ANALGESIA DATABASE 146

We pull out the trade name of the drdigand only tick the box if an epoch
has been made on the process more recently than the generic observation for the
whole process.

We must also record and reveal the total amount of drug given, if noted. We
attach this functionality to the numeric box:

UPDATE ITEM SET iResponse = '&Set24’
WHERE iID = 1510;

Set24 sets the most recent (24 hour) dosage.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (233,
'INTEGER->COPY->ISNUMBER->SKIP->=Fail(Not a number!)->
BURY->V->&NewRxObs2->
DIGUP->SWOP->
DOSQL(UPDATE RXOBS SET rxoTotal=$[]] WHERE rxobs = $[]),
'Set24’);

In the above we first ‘convert to an integer’ (from a text string) and then use
the cumbersome ‘isnumber’ tet.

UPDATE ITEM SET ilnitial = 'V->&Get24hr’
WHERE iID = 1510;

Get24hr obtains the most recently recorded (24 hour) dosage.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (234,
'$[EpL]->
QUERY(SELECT RXOBS.rxoTotal
FROM RXOBS,EPOCH WHERE RXOBS.Epoch = EPOCH.epoch AND
EPOCH.Process = $[] AND EPOCH.epoch > $[]),
'Get24hr’);

Here are the buttons controlling the addition of another drug. Process code 50
is ‘enteral drug administration’. We include access to our ‘nausea Rx menu’ both
here and later!

9A later option might be the ability to check the generic name using a stylus tap!
801's most desirable to have INTEGER perform the test, and then be able to test for/interrupt
on this condition. A lot of overhead could be removed if we instituted such ‘parallel’ evaluation!

5 MENUS FOR THE ANALGESIA DATABASE 147

5.13.2 ListDrugs

It was good to take out the PHARM table as it isn’'t needed on the PDA (but might
later be introduced for analysis etc). We have now created a DRUGUSAGE table,
which associates a DRUG entry with a particular role. Important roles are PCA
and anti-nauseant. For details, #e®lgesiaDBpartl.tex

We can now identify the formulation of the drug (for e.g. epidural use, IV use,
TTS patch, or whatever) AND the specific role(s) of each formulation of each
drug. We might make the DRUGUSAGE table sparse, so that if we don’t require
arole, then we don’t busy up this table!

We don't need a separate epidural role for formulations which are ‘epidural’;
the fun arises with PCA drugs (which can otherwise be used 1V), the variety of
anti-nauseants, which can have various formulations, and oral analgesics.

All instances of use of ListDrugs will then be modified to remove the (eugh)
dependence on particular key codes (in a range), replacing such usage with the
more robustole identification

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (1517, 6, 'ADD Analgesic’, 'newdrg’,
->#5->&ListDrugs’);

-- Usage value of 5 in DRUGUSAGE = oral analgesics

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1716, 915, 716, 3,
0.68, 0.001, 0.30, 0.08, 0);

UPDATE ITEM SET iResponse = '#50->&SetDrug’ WHERE iID = 1517,

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (1517, 915, 1517, 2, 0.001, 0.001, 0.60, 0.10);

ListDrugs at present simply lists all optior¥s.As usual in a list, we provide
pairs of IDs and itemsListDrugs previously looked for primary keys in a range.
It now consults the DRUGUSAGE table for the relevant code, joining the resulting
DRUG table keys.

INSERT INTO FUN (fKey, fBody, fName) VALUES (221,

'QMANY(SELECT DRUGUSAGE.Drug,DRUG.dTrade FROM DRUGUSAGE,DRUG WHERE
DRUGUSAGE.drUsage = $[] AND DRUGUSAGE.Drug = DRUG.drug)’,

81Might refine to exclude items already selected!

5 MENUS FOR THE ANALGESIA DATABASE 148

'ListDrugs’);

Formerly we listed drugs with a reference to a ‘pharmaceutical agent’ table
(PHARM), using the primary key of that table to specify a range within which
items were selected. This approach was nasty for two reasons:

1. Compound drugs (mixtures containing several active ingredients) are not
well represented,;

2. The use of a range of keys is convenient but artificial and ugly.

We have re-written things to permit grouping of drugs in several ways. We
retain grouping by ID (but this time, for the drug to be selected, the ID must be
within a range of key numbers specified in the DRUG table!), and also permit
grouping by formulation. This approach frees up the PHARM table allowing us
(if we wish) to associate several drugs with one particular formulation, but still
maintains the rather unfortunate key-based selection, simply because it's so fast
and convenient. As things stand, we have completely removed the PHARM table,
but it can be re-introduced and then associated in a many to one fashion with items
in the DRUG table using, say, a PHARMDRUG table. This latter approach would
permit us to represent compound drugs, if we wanted to.

Invocations of ListDrugs were as follows:

Item 424 Regional infusion; (was: 99-110) drugform: 1=epidural
Item 1424 1V infusion; (was: 119-130) drugform: 8 = for intravenous PCA

Item 1517 Add oral analgesic; (was: 199-600) ((drugform: 10—13—17 = oral
(various)))

Item 2517 PR drug administration; (was: 1999-2100) drugform: 20 = supposi-
tory

Item 2617 Transdermal drug; (was: 2999-3100) drugform: 30 = patch
Item 2717 Special infusion; (was: 699-899) drugform: 4 (IV non-pca)

Item 3517 Anti-nauseants; (was: 599-700) no particular drugform.

All of the above classes can actually be identified by formulation, apart from
the anti-nauseants, oral analgesics and special infusions. We will rather arbitrarily
allocate anti-nauseants DRUG key codes between 19456 and 20479 inclusive,
allowing us to pull these out! Perhaps less nasty ways of classifying such drugs

5 MENUS FOR THE ANALGESIA DATABASE 149

would be (a) to describe classes in an associated table (slower) or (b) to have
a classification field in the DRUG table, preferably using bit flags rather than
constraining each agent to a single class (complex and requires bit-masking in
SQL = ugh).

We will similarly allocate oral analgesics codes between 2048 and 5119 in-
clusive, and ‘special infusions’ even more arbitrary codes between 22528 and
100351.

Here’s a routine to list by formulation (given the formulation code), for exam-
ple 1 for regional, 2 for IV PCA formulations, 20 for rectal.

INSERT INTO FUN (fKey, fBody, fName) VALUES (265,

'"QMANY(SELECT drug,dTrade FROM DRUG WHERE
DRUG.DrugForm = $[])’,

'ByFormulation’);

SetDruy creates a new process associated with administration of the selected
drug, and then reloads so that the drug is now listed. [Think about having confir-
mation??] On the top of the stack is the nature of the drug therapy, and below this
is the ID of the drug itself.

INSERT INTO FUN (fKey, fBody, fName) VALUES (222,

'SWOP->COPY->BURY->

QUERY(SELECT dTrade FROM DRUG WHERE drug = $[])->

CONFIRM(Start $[]?)->SKIP->RETURN->

&NewProc->

BURY->KEY(Rx)->DIGUP->DIGUP->

DOSQL(INSERT INTO RX(rx,Process,Drug)
VALUES($[],$[.%[))->

MENU(0)’,

'SetDrug’);

5.14 Nausea Rx (3915)

This menu is almost a clone of the ‘Oral therapy menu’, despite the fact that anti-
nauseants in this menu can be either oral or parenteral. We thought about this one
a lot, and felt that bunging anti-nauseants on the pain page was more clumsy than
putting them on the following page where nausea is listed as a préblem.

A menu with a ‘Done’ button:

82A new user will only fret once about the absence of these drugs on the pain page, and the
nausea menu is also accessible from the ‘orals’ and ‘other Rx’ menus!

5 MENUS FOR THE ANALGESIA DATABASE 150

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (3915, 20, 'Nausea Rx', 'NAUSEA;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (3915, 3915, 3915, 12,
0.000, 0.001, 0.999, 0.999, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (501, 2, ’Done’, ’Exitbtn’, ", 1);
UPDATE ITEM SET iResponse = 'MENU(-1)’
WHERE iID = 501,

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (3501, 3915, 501, 2,
0.750, 0.900, 0.200, 0.08, O, ’'green’, 'white’);

Button 501 is a similar to 401, a previously defined exit button. We initialise
by determining the most recent general epoch for this patient, that is we find the
start of the current epoch.

UPDATE ITEM SET ilnitial =
'NAME(EpL)->
#1->X->&LastEpoch->SET(EpL)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])’
WHERE iID = 3915;

Next we need to insert controls to process the following:

1. A list of current anti-nausea drugs
2. Ability to remove a drug from the list by simply clicking on the name

3. Ability to add another drug by selecting a drug from a list

5.14.1 A list of antinauseants

INSERT INTO ITEM (iID, iType, iText, iName, iLines)
VALUES (3508,8,'[No nausea Rx],'nRx’,8);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (3512, 2, nNa’),
(3510, 14, nto’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (3508, 3915, 3508, 0, 0.001, 0.12, 0.95, 0.74);

5 MENUS FOR THE ANALGESIA DATABASE 151

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,

irName, irFraction, irEnabled)

VALUES (3512, 3508, 3512, 1, 'Drug’, 0.70, 1),
(3510, 3508, 3510, 2, 'mg in 24h’ 0.29, 1);

UPDATE ITEM SET ilnitial = '&GetNauseaRxProcs’ WHERE ilID = 3508;

The following is a very specific routine to obtain all anti-nausea Rx for this
patient alone:

INSERT INTO FUN (fKey, fBody, fName) VALUES (254,

"X->QMANY(SELECT PROCESS.process FROM RX,PROCESS WHERE
RX.Process = PROCESS.process AND
RX.Drug > 19000 AND
PROCESS.rEnd IS NULL AND
PROCESS.Person = 9[]),
'GetNauseaRxProcs’);

At present westill use the clumsy hack of having key values for anti-nauseants
of over 19000, rather than trying the more complex multiple join on the DRU-
GUSAGE table!

The Drug conditions in the above are outrageous hacks and really should be
addressed! There is a further problem in the Ocelot database, where if we add in
the condition ‘RX.Drug< 4700 AND’ then we obtain an obscure GPF.

We also need to initialise the components:

UPDATE ITEM SET ilnitial = 'V->&GetTradeName’
WHERE ilD = 3512;

Respond to a click on the name button by giving the opportunity to stop the
drug:

UPDATE ITEM SET iResponse = 'V->&AskStopDrug’
WHERE iID = 3512;

We must also record and reveal the total amount of drug given, if noted. We
attach this functionality to the numeric box:

UPDATE ITEM SET iResponse = ’'&Set24’
WHERE iID = 3510;

UPDATE ITEM SET ilnitial = 'V->&Get24hr’
WHERE iID = 3510;

83Look into this; at some later stage ‘higher’ drugs will otherwise start appearing in this menu!

5 MENUS FOR THE ANALGESIA DATABASE 152

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (3517, 6, 'ADD Nausea Rx’, ’'newdrg’,
->#4->&ListDrugs’);

-- 4 represents ’anti-nauseants’ in the DRUGUSAGE table.

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (3517, 3915, 3517, 2, 0.001, 0.001, 0.60, 0.10);

ListDrugs looks at generic codes. The response to ADDing a drug is a lot
more complex than is the case for orals, because we might be adding an 1V drug,
oral agent or even a scopolamine TTS patch! Our coding is clumsy, and depends
heavily on the drug codes (SPerlPgm.texsection on ‘drug.csv’). This unpleas-
ant coding subclassifies IV anti-nauseants into the range 19456-19967, orals from
19968-20096, and (at present) the remaining higher codes for ‘transdé&tmal’.
Process code 50 is enteral drug; 291 is IV drug boluses, 280 is transdermal.

UPDATE ITEM SET iResponse =
'COPY->GREATER(#19967)->SKIP->=SetDrug(#291)->

COPY->GREATER(#20096)->SKIP->=SetDrug(#50)->&SetDrug(#280)’
WHERE iID = 3517;

5.15 Other drugs and modalities (2915)

Figure 13: Other modalities

Set this up to accommodate:

1. Rectal paracetamol

84A really nasty hack. Ugh.

5 MENUS FOR THE ANALGESIA DATABASE 153

Rectal morphine
Rectal diclofenac
Transdermal clonidine
Transdermal fentanyl
SC morphine

IV ketamine infusions

© N o g~ W D

Boluses of analgesics and other drugs.

First, we create the menu, with a ‘Done’ button. ..

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2915, 20, 'Other Rx’, 'OTHER);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2915, 2915, 2915, 12,
0.000, 0.001, 0.999, 0.999, 0);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup, miPaper, milnk)
VALUES (2501, 2915, 401, 2,
0.750, 0.900, 0.200, 0.08, O, ’'green’, 'white’);

As for orals, we set EpL.:

UPDATE ITEM SET ilnitial =
'NAME(EpL)->
#1->X->&LastEpoch->SET(EpL)->&SetEvent(#4)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])’
WHERE iID = 2915;

Here’s the entry routine. Process codes 260—299 represent the relevant ones!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (229,
'X->#259->#300->&FindAdministration->
BOOLEAN->NOT->SKIP->MENU(OTHER)->
CONFIRM(Other Rx?)->SKIP->=FailAndReload(No!)->
MENU(OTHER)',

'GoOther’;

5 MENUS FOR THE ANALGESIA DATABASE 154

5.15.1 Rectal (PR) therapy

We create a table of ‘other Rx’:

INSERT INTO ITEM (iID, iType, iText, iName, iLines)
VALUES (2508,8,'[No other RXx]’,’oRx’,8);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2512, 2, '‘Nam’),
(2510, 14, ‘tot’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (2508, 2915, 2508, 0,
0.001, 0.18, 0.95, 0.70);

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,

irName, irFraction, irEnabled)

VALUES (2512, 2508, 2512, 1, 'Drug, 0.70, 1),
(2510, 2508, 2510, 2, 'mg in 24h’, 0.29, 1);

UPDATE ITEM SET ilnitial = 'V->&Get24hr’
WHERE iID = 2510;

UPDATE ITEM SET iResponse = '&Set24’
WHERE iID = 2510;

UPDATE ITEM SET ilnitial = "X->#259->#300->&GetDrugProcs’
WHERE ilD = 2508;

UPDATE ITEM SET iResponse = 'V->&AskStopDrug’
WHERE iID = 2512;

UPDATE ITEM SET ilnitial = 'V->&GetTradeName’
WHERE ilID = 2512;

We have buttons to add the various modalities:

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (2517, 6, ’'Add PR drug’, ’newdrg’,
->#20->&ByFormulation’);

UPDATE ITEM SET iResponse = '#270->&SetDrug’ WHERE iID = 2517;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

miX, miY, miwW, miH)
VALUES (2517, 2915, 2517, 2,

5 MENUS FOR THE ANALGESIA DATABASE 155

0.001, 0.001, 0.49, 0.08);

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (2617, 6, 'Add T/dermal’, ’newdrg’,
->#30->&ByFormulation’);

UPDATE ITEM SET iResponse = '#280->&SetDrug’ WHERE ilD = 2617;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH)
VALUES (2617, 2915, 2617, 3,
0.501, 0.001, 0.49, 0.08);

INSERT INTO ITEM (iID, iType, iText, iName, iList)
VALUES (2717, 6, °'Add Infusion’, ’'newdrg’,
->#3->&ListDrugs’);

-- in the DRUGUSAGE table, 3 represents a ’special’ IV infusion.

UPDATE ITEM SET iResponse = '#290->&SetDrug’ WHERE ilD = 2717;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (2717, 2915, 2717, 4,
0.001, 0.10, 0.49, 0.08);

--- finally, IV boluses: (any IV with formulation code 4)
INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (2718, 6, 'lIV boluses’, ’'newdrg’,
->#2->&ListDrugs’);
-- This gives IV drugs administered as IV boluses (excluding anti-nauseants)!

UPDATE ITEM SET iResponse = '#291->&SetDrug’ WHERE iID = 2718;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (2718, 2915, 2718, 5,
0.501, 0.10, 0.49, 0.08);

5.15.2 Yet more therapy

There are infinite possibilities. Best here might be to simply add a comment
(Hmm) rather than having an even more busy menu!

5 MENUS FOR THE ANALGESIA DATABASE 156

5.16 ‘Finally’: New alerts &c (909)

Figure 14: New alerts

We create an ‘Alerts’ menu:

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (909, 20, 'New Alerts’, 'FINISH);

Here’s the initialisation string:

UPDATE ITEM SET ilnitial = 'NAME(EpL)->
#1->X->&LastEpoch->SET(EpL)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])’
WHERE iID = 909;

As usual we make the menu item self-referential, and create a few buttons at
the bottom. We allow comment insertion here, again, and also have a ‘Discharge’
button at the bottom. The Done button must turn off CACHING by saying UN-
CACHE(PROCESS)....

INSERT INTO MENUITEMS (miUid, miMenu, miltem,
miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (909, 909, 909, O,
0.001, 0.001, 0.990, 0.990, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (700, 2, ’'Done’, ’'exAl, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (700, 909, 700, 41,
0.750, 0.900, 0.200, 0.08, 0, ’'green’, 'white’);

5 MENUS FOR THE ANALGESIA DATABASE 157

Here’s the response to the [Done] button:

UPDATE ITEM SET iResponse =
'X->&UnFlagMe->
$[EpL]->&EndEpoch->
UNCACHE(EPOCH)->UNCACHE(PROCESS)->MENU(4)’
WHERE iID = 700;

UnFlagMe clears the ‘! i.e. ‘patient to be seen’ flag in the list of patients on
the ward, and EndEpoch records the time spent seeing this patient (in seconds) for
the epoch stored iEpL. The MENU(4) command removes all stacked menus,
returning to the patient selection menu.

Here’s the EndEpoch function. It takes the ID of the relevant epoch on the
stack, and inserts a duration (oddly enough in milliseconds) in the oLengtiield.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (272,
'COPY->BURY->
QUERY(SELECT oMade FROM EPOCH WHERE epoch = $[])->FLOAT->
NOW->FLOAT->SWOP->SUB->
FLOAT(86400000)->MUL->FLOAT(0.5)->ADD->INTEGER->
DIGUP->
DOSQL(UPDATE EPOCH SET olLength=$[] WHERE epoch = 3[]),
'EndEpoch’);

We find the start timestamp, subtract it from the current time, and multiply
by the number of milliseconds in a day. The FLOAT conversions produce Julian
days. We round up by adding 0.5 ms.

We continue . ..

INSERT INTO ITEM (ilD, iType, iText, iName, iList,

iLines)
VALUES (701, 2, ‘'Back’, 'bkAI, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

VALUES (701, 909, 701, 39,

0.05, 0.900, 0.200, 0.08, 0);

UPDATE ITEM SET iResponse = 'MENU(1)’

WHERE iID = 701;

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (731, 2, ‘'Discharge’, ’dsch’, ”, 1),

85EndEpoch does not check whether oLength is already populated, not that this should ever be
a problem.

5 MENUS FOR THE ANALGESIA DATABASE 158

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (731, 909, 731, 39,
0.36, 0.90, 0.28, 0.08, 0, 'red’, ’'white’);

Here’s the discharge response:

UPDATE ITEM SET iResponse =
'‘#104->#151->&ProcBetween->
BOOLEAN->NOT->
SKIP->=Fail(Please first stop regional!)->
#389->#391->&ProcBetween->
BOOLEAN->NOT->
SKIP->=Fail(Please first stop PCAl)->
CONFIRM(Alive on discharge?)->
SKIP->=PatientDied->MENU(DISCHARGE)’

WHERE iID = 731;

Here’s PatientDied:

INSERT INTO FUN (fKey, fBody, fName)

VALUES (255, 'CONFIRM(Is patient dead?)->
SKIP->=Fail(Not discharged)->
$[EpL]->&EndEpoch->
UNCACHE(EPOCH)->UNCACHE(PROCESS)->
NOW->X->DOSQL(UPDATE PERSON SET pDied=TIMESTAMP "$[]” WHERE person = $[])->
X->DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
X->#0->#9999->&KillManyProcs->MENU(#4)’,

'PatientDied’);

Note that in the above pDied records the timestamp whemewerdedthe
death, which can be a variable period after the actual death. We also invoke En-
dEpoch to register the time spent processing this ‘visit’, despite there (usually)
being no patient contact!

We terminate all processes associated with the patient, and turn off the active
bed status in BADOB%?

We put text Y and N labels at the top of the column of pushbuttons, and then
create this column of pushbuttons, with appropriate labels on the left. Items 704,
705 and 706 have been previously defined in the epidural menu!

86If we were ever to create processes with codes above 9999, then this code would require
modification. Clumsy.

5 MENUS FOR THE ANALGESIA DATABASE 159

-- hypotension:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (704, 909, 704, 20,
0.45, 0.20, 0.07, 0.08, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (705, 909, 705, 21,
0.55, 0.20, 0.07, 0.08, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (706, 909, 706, 22,
0.05, 0.20, 0.07, 0.08, 0);

For documentation of hypotension, we first need to establish whether there is
a ‘Blood pressure monitoring process’ for this patient (code 1120). If there isn't,
once a Y or N button is clicked, we create one. We then determine whether there
is an epoch (on this process) which documents either the presence or absence of
hypotension.

The SpawnProblem routine assumes that $[EpL] exists. It accepts the process
type on the stack, and returns the ID of an ISPROBLEM entry, making process,
epoch and isproblem entry as required!

We accept the type of the process (eg 1120) on the stack. We MARK the stack
below this value, find or create the relevant process, find or create the relevant
observation, and then find or create an ISPROBLEM entry. We bury a copy of the
problem key, unmark the stack, and then dig up the copy of this key, returning it
on the otherwise clean stack.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (224, 'MARK(#1)->COPY->
&FindRecentProcess->QOK->SKIP->&NewProc->
COPY->3$[EpL]->
QMANY(SELECT MAX(EPOCH.epoch) FROM EPOCH WHERE EPOCH.Process = $[]

AND EPOCH.epoch >= $[))->
QOK->SKIP->&NewEpoch->
COPY->
QUERY(SELECT ISPROBLEM.isproblem FROM ISPROBLEM
WHERE ISPROBLEM.Epoch = $[])->
QOK->SKIP->&NewProblem->
BURY->UNMARK->DIGUP’,

'SpawnProblem’);

In SpawnProblem we check for an EPOCH.epoch greater tlmrequal to
EpL because it is also possible to attach an ISPROBLEM entry to EpL and we do

5 MENUS FOR THE ANALGESIA DATABASE 160

not want to force creation of a new epoch on process 1, or all our references back
to EpL will become corrupted!

NewProblem creates a new row in the ISPROBLEM table, given the epoch on
the stack. It returns the key of the row on the stack.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (225, 'BURY->KEY(IsProblem)->COPY->DIGUP->
DOSQL(INSERT INTO ISPROBLEM(isproblem,Epoch)VALUES($[],$0))’,

'NewProblem’);

We also need to be able to fetch the current ISPROBLEM entry:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (226, 'X->&LastEpoch->QOK->SKIP->STOP->
COPY->$[EpL]->LESS->NOT->SKIP->STOP->
QUERY(SELECT ISPROBLEM.prisOrNot FROM ISPROBLEM
WHERE ISPROBLEM.Epoch = $[])’,

'FetchProblem’);

FetchProblemuses LESS/NOT rather than GREATER as we entertain the pos-
sibility that the problem entry might actually refer to EpL!

SetProblem takes the ISPROBLEM key and a value on the stack (the latter on
the stack top) and sets prisOrNot:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (227, 'SWOP->
DOSQL(UPDATE ISPROBLEM SET prisOrNot=$[] WHERE
isproblem = $[])’,

'SetProblem’);

-- sedation
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (710, 4, 'Y’, ’'sdY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (710, 909, 710, 23,
0.45, 0.30, 0.07, 0.08, 2);
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (711, 4, °'N’, ’'sdN’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (711, 909, 711, 24,
0.55, 0.30, 0.07, 0.08, 2);
INSERT INTO ITEM (ilD, iType, iText, iName)

5 MENUS FOR THE ANALGESIA DATABASE 161

VALUES (712, 1, ’sedation’, ’sdlL");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (712, 909, 712, 25,
0.05, 0.30, 0.07, 0.08, 0);

UPDATE ITEM SET ilnitial =
'#1110->&FetchProblem’ WHERE ilD = 710;

UPDATE ITEM SET iResponse =
'#1110->&SpawnProblem->#1->&SetProblem’
WHERE iID = 710;

UPDATE ITEM SET ilnitial =
'#1110->&FetchProblem->QOK->SKIP->#1->BOOLEAN->NOT’
WHERE iID = 711;

UPDATE ITEM SET iResponse =
'#1110->&SpawnProblem->#0->&SetProblem’

WHERE iID = 711,

-- nausea (uses items 707, 708, 709, 716: previously defined)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (707, 909, 707, 26,
0.45, 0.40, 0.07, 0.08, 3);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (708, 909, 708, 27,
0.55, 0.40, 0.07, 0.08, 3);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (709, 909, 709, 28,
0.05, 0.40, 0.07, 0.08, 0);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (716, 909, 716, 3,
0.65, 0.40, 0.30, 0.08, 0);

-- pm review
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (713, 3, ”, ’'pmr);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

miX, miY, miwW, miH, miGroup)
VALUES (713, 909, 713, 31,

0.45, 0.10, 0.07, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (715, 1, ’pm review’, ’'pmL’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

5 MENUS FOR THE ANALGESIA DATABASE 162

VALUES (715, 909, 715, 32,
0.05, 0.10, 0.07, 0.08, 0);

UPDATE ITEM SET ilnitial =
'X->&GetPmFlag->BOOLEAN’ WHERE ilID = 713;
UPDATE ITEM SET iResponse =
'SKIP->=EndProcByType(#1100)->&NewProc(#1100)’
WHERE iID = 713;

-- a few headings, and problems:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (722, 1, 'ALERTS:, ‘all’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (722, 909, 722, 3,
0.36, 0.01, 0.28, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (723, 1, ’'Any substantial problem?’, ’qcl’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (723, 909, 723, 34,
0.05, 0.60, 0.50, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (724, 4, 'Y', 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (724, 909, 724, 35,
0.75, 0.60, 0.07, 0.08, 4);
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (725, 4, 'N’, ’'prN";
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (725, 909, 725, 36,
0.85, 0.60, 0.07, 0.08, 4);

UPDATE ITEM SET ilnitial =
'#1->&FetchProblem’ WHERE ilD = 724;

UPDATE ITEM SET iResponse =
'#1->&SpawnProblem->#1->&SetProblem->MENU(COMMENTS)’
WHERE iID = 724;

UPDATE ITEM SET ilnitial =
'#1->&FetchProblem->QOK->SKIP->#1->BOOLEAN->NOT’
WHERE iID = 725;

5 MENUS FOR THE ANALGESIA DATABASE

UPDATE ITEM SET iResponse =
'#1->&SpawnProblem->#0->&SetProblem’
WHERE ilID = 725;

The following item will pull in the most recent comment.

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (259, 909, 159, 3,
0.05, 0.740, 0.94, 0.08, 1),

5.17 Discharge menu (921)

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (921, 20, 'Discharge’, 'DISCHARGE);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1921, 921, 921, 0,
0.001, 0.001, 0.990, 0.990, 0);

-- the Abort button, used previously:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1922, 921, 80, 40,
0.05, 0.900, 0.200, 0.08, 0, 'green’, 'white’);

-- the 'Confirm Discharge’ button:
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1923, 2, ’'Discharge Now!, ’chtn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1923, 921, 1923, 41,
0.50, 0.90, 0.45, 0.08, 0, 'red’, 'white’);
UPDATE ITEM SET iResponse = '&DoDischarge’
WHERE iID = 1923;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1924, 1, 'REFERRAL TO:, 'mp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1924, 921, 1924, 3,
0.05, 0.200, 0.50, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (1925, 1, 'TARPS’, 'mp’;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)

163

5 MENUS FOR THE ANALGESIA DATABASE

VALUES (1925, 921, 1925, 4,
0.18, 0.30, 0.50, 0.08, 0);

-- the tick-box:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1935, 3, ", 'trps’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1935, 921, 1935, 5,
0.05, 0.30, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '&GetDProc(#2)’ WHERE iID
UPDATE ITEM SET iResponse = 'SET(tarps) WHERE ilD

1935;
1935;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1926, 1, ’Inpatient Palliative Care’, 'mp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1926, 921, 1926, 6,
0.18, 0.40, 0.50, 0.08, 0);

-- the tick-box:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1936, 3, ", 'ippc);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1936, 921, 1936, 7,
0.05, 0.40, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '&GetDProc(#3) WHERE iID = 1936;
UPDATE ITEM SET iResponse = 'SET(inpall)) WHERE iID = 1936;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1927, 1, ’'Community Palliative Care’, 'mp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1927, 921, 1927, 8,
0.18, 0.50, 0.50, 0.08, 0);

-- the tick-box:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1937, 3, ", ’oppc);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1937, 921, 1937, 9,
0.05, 0.50, 0.07, 0.08, 0);
UPDATE ITEM SET ilnitial = '&GetDProc(#4) WHERE iID = 1937;
UPDATE ITEM SET iResponse = 'SET(outpall) WHERE ilD = 1937

-- Optional comment + field: item 1805 is also used later!
INSERT INTO ITEM (ilD, iType, iText, iName)

164

5 MENUS FOR THE ANALGESIA DATABASE 165

VALUES (1805, 1, ’'Optional comment:’, ’'mdat’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1938, 921, 1805, 10,
0.05, 0.60, 0.30, 0.08, 0);

-- the comment field. Re-uses 661. Requires $[comment]
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1939, 921, 661, 11,
0.05, 0.75, 0.90, 0.08, 0);

Here’s the initialisation for the Discharge menu (ID 921):

UPDATE ITEM SET ilnitial =

'NAME(comment)->
name(tarps)->name(inpall)->name(outpall)->
NAME(EpL)->#1->X->&LastEpoch->SET(EpL)->
#0->set(tarps)->#0->set(inpall)->#0->set(outpall)->
X->&FetchldNumber->X->&FetchSurname->Title($[] : $[])
WHERE iID = 921,

We require EpL as we use this epoch when invoking the EndEpoch routine.
Here’sDoDischarge. At present it’s pretty simple, but wado check for various
flags associated with referrals, and document these referrals by creating distinct
post-discharge processes (process code 5). On readmission, do we check on these?
Certainly don't re-create them if they exist on rpt discharge!

INSERT INTO FUN (fKey, fBody, fName)

VALUES (228, '$[comment]->ISNULL->SKIP->&MakeGeneralComment->
X->
DOSQL(UPDATE BADOBS SET boFlag=NULL WHERE Person = $[])->
$[tarps]->NOT->SKIP->&PostDProc(#2)->
$[inpall]->NOT->SKIP->&PostDProc(#3)->
$[outpall]->NOT->SKIP->&PostDProc(#4)->
$[EpL]->&EndEpoch->
X->#0->#9999->&KillManyProcs->
UNCACHE(EPOCH)->UNCACHE(PROCESS)->
MENU(#5)’,

‘DoDischarge’);

We've increased the number of menus popped to 5 owing to our new format
as of 2007-11-14.

First up we check for the presence of a comment and (if present) attach this to
the general observation process.

5 MENUS FOR THE ANALGESIA DATABASE 166

We remember to turn off the active bed status in BADOBS so that we don’t
‘see’ the patient as being admitted on the wérd.

We then terminate the current visit’s epoch before we end the procedures and
turn off CACHING. The MENU(4) command removes all four stacked menus.
In a previous incarnation of DoDischarge, we diok terminate processes above
code 1000, retaining problems such as renal dysfunction as ‘active’. There are
several problems with such an approach (we aren’t monitoring the process; it
forces export of the data to the PDA and will eventually clog up the PDA tables)
so now we terminate all processes on discharge (up to 9999 anyway!), even the
PostDProc!

GetDProc checks whether a given discharge process (associated with a partic-
ular virtual person) exists, returning 1 or O.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (256,
"X->SWOP->
QUERY(SELECT process FROM PROCESS WHERE ProcType = 5 AND
Person = $[] AND rPlanner = $[))->
QOK->SKIP->RETURN(#0)->DISCARD->
RETURN(#1)',

'GetDProc);

Finally, here’s the ‘Post-discharge’ process creator, which attaches a particular
‘rPlanner’ value to a discharge process. The code is clumsily hard-coded above
and submitted on the stack:

INSERT INTO FUN (fKey, fBody, fName)

VALUES (257,

'COPY->X->SWOP->
QUERY(SELECT process FROM PROCESS WHERE ProcType = 5 AND
Person = $[] AND rPlanner = $[])->QOK->
NOT->SKIP->RETURN->

BURY->KEY (Process)->X->now->now->DIGUP->

DOSQL(INSERT INTO PROCESS
(process,Person,rStart,rCreated,rPlanner,ProcType)
VALUES($[],$0, TIMESTAMP "$[]”, TIMESTAMP “$[]",$[1,5))’,

'PostDProc’);

After checking for the existence of a similar process for this patient, we return
if one exists. Otherwise we create the process. We should return nothing but at
present this clumsy routine unbalances the stack.

87This bed status observation applies solely to our ‘pain team’ perspective on the patient.

5 MENUS FOR THE ANALGESIA DATABASE 167

5.18 Help menus

Clicking on the header of a menu is convenient, and we utilise this ability. We
permit the attachment of an arbitrary script to any menu thus:

UPDATE ITEM SET iResponse = '$[activeW]->ALERT(Wards with flagged patients: $[])’
WHERE iID = 900;

Here’s our initialisation script for the same menu, which is now rather com-
plex, to allow us to find out which wards contain cases!

update item set ilnitial = 'NAME(useW)->NAME (activeW)->#0->
SET(useW)->MARK(#0)->BURY (#0)->
QMANY(SELECT DISTINCT WARD.swrdText FROM
BADOBS,BED,ROOM,WARD WHERE BADOBS.boFlag = 1
AND BADOBS.bolnactive IS NULL AND BADOBS.cold IS NULL
AND BADOBS.Bed = BED.bed AND BED.Room = ROOM.room
AND ROOM.Ward = WARD.ward ORDER BY WARD.swrdText)->
QOK->SKIP->"-"->JOIN(,)->" ,$[],"->SET(activeW)->UNMARK’ where iid = 900;

... but we might just as easily attach a MENU command within a script, al-
lowing us to enter menus with more details of past observations. In the following
pages we illustrate several such menus, for example, to provide details of past pain
scores.

5.18.1 Pain help menu

Figure 15: Pain Help menu

UPDATE ITEM SET iResponse = 'MENU(PAINHX)’
WHERE ilID = 907,

5 MENUS FOR THE ANALGESIA DATABASE 168

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (950, 20, 'Past Pain Data’, 'PAINHX’);
-- UPDATE ITEM SET ilnitial = ” WHERE ilID = 950;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (950, 950, 950, O,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1050, 8, ’[No history], ’'PnHx’, ", 12);
--- polymenu for pain data

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)

VALUES (1054, 1, ', 'DtTm’, ”, 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1053, 1, -, 'PnMv’, ", 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1052, 1, -, 'PnRs’, ”, 1);
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1051, 1, -, ’'Cgh’, ", 1)

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1054, 1050, 1054, 1, 'Date/time’, 0.45);
--- date/time of observation column

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1053, 1050, 1053, 2, 'Mvmt’, 0.18);
-- pain on movement

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1052, 1050, 1052, 2, 'Rest’, 0.18);
-- rest pain

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1051, 1050, 1051, 2, 'Cough’, 0.19);
-- cough

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (1050, 950, 1050, 22,
0.001, 0.01, 0.999, 0.850, 0, 0);
--- above is pain info (1050)

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1060, 2, ’'Done’, ‘’done’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

5 MENUS FOR THE ANALGESIA DATABASE 169

miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1060, 950, 1060, 10,
0.750, 0.900, 0.200, 0.08, O, 'green’, 'white’);
UPDATE ITEM SET iResponse = 'MENU(-1)’
WHERE iID = 1060;

We still must initialise the polytable:

UPDATE ITEM SET ilnitial =
"X->QMANY(SELECT PAINSCORE.painscore FROM PAINSCORE,EPOCH,PROCESS
WHERE PAINSCORE.Epoch = EPOCH.epoch AND
EPOCH.Process = PROCESS.process AND
PROCESS.Person = $[] ORDER BY PAINSCORE.painscore DESCY)’
WHERE iID = 1050;

...as well as the individual items:

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT psoCough FROM PAINSCORE WHERE painscore = $[])->
SKIP->RETURN(-)->"Ok"
WHERE ilD = 1051;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT psoRest FROM PAINSCORE WHERE painscore = $[])’
WHERE iID = 1052,

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT psoMovement FROM PAINSCORE WHERE painscore = $[])’
WHERE ilD = 1053;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT EPOCH.oMade FROM PAINSCORE,EPOCH WHERE
PAINSCORE.painscore = $[] AND PAINSCORE.Epoch = EPOCH.epoch)->
SPLIT()->BURY->&ShortDate->
DIGUP->
SPLIT(:)->DISCARD->
"$O $[:$0"
WHERE iID = 1054;

In the above we split the timestamp into date and time (on the intervening
space). We then split the time into HH MM SS, discarding the seconds.

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1055, 950, 9926, 99,
0.05, 0.900, 0.200, 0.08, 0, 'yellow’, ’black’);

5 MENUS FOR THE ANALGESIA DATABASE 170

5.18.2 PCA help menu

UPDATE ITEM SET iResponse = 'MENU(PCAHX)’
WHERE iID = 914;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (951, 20, 'PCA History’, 'PCAHX);

Here’s the initialisation script for the PCA History menu. Not only do we set
up prQ, we also determine whether the drug used is fentanyl, and create and set
thefentanylvariable, so that we can specify micrograms rather than mg.

UPDATE ITEM SET ilnitial =
'NAME (prQ)->X->#389->#391->&FindAdministration->SET (prQ)->
NAME (fentanyl)->#0->SET (fentanyl)->$[prQ]->
QUERY(SELECT DRUG.dTrade FROM RX,DRUG
WHERE RX.Process = $[] AND
RX.Drug = DRUG.drug)->
IN(Fentanyl)->SET (fentanyl)’
WHERE iID = 951,

Thefentanylvariable is used byfromMicrograms!

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (951, 951, 951, O,
0.001, 0.001, 0.990, 0.990, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1070, 8, ’[No PCA history], 'PnHx’, ”, 12);
--- polymenu for pain data

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)

VALUES (1074, 1, ', 'DtTm’, ”, 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1073, 1, -, ’'PcaD’, ", 1),
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1072, 1, -, ’'PcaT, ", 1);
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1071, 1, ', 'PcTo’, ", 1)

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1074, 1070, 1074, 1, 'Date/time’, 0.45);
--- date/time of observation column

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1073, 1070, 1073, 2, 'Doses’, 0.18);
-- pca doses

5 MENUS FOR THE ANALGESIA DATABASE 171

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1072, 1070, 1072, 2, 'Tries’, 0.18);
-- pca tries

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1071, 1070, 1071, 2, 'Tot, 0.19);
-- pca total dose

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (1070, 951, 1070, 22,
0.001, 0.01, 0.999, 0.850, 0, 0);
--- pca info (1070) into menu

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1080, 2, ’Done’, ’done’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1080, 951, 1080, 10,
0.750, 0.900, 0.200, 0.08, 0, 'green’, 'white");
UPDATE ITEM SET iResponse = 'MENU(-1)'
WHERE iID = 1080;

-- a PCA history button:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1079, 951, 9926, 99,
0.05, 0.900, 0.200, 0.08, 0, 'yellow’, 'black’);

We still must initialise the polytable:

UPDATE ITEM SET ilnitial =
'$[prQJ->
QMANY(SELECT epoch FROM EPOCH WHERE Process = $[] ORDER BY epoch)’
WHERE ilD = 1070;

...as well as the individual items:

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT pcoGood FROM PCA WHERE Epoch = $[])’
WHERE iID = 1073;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT pcoTries FROM PCA WHERE Epoch = $[])
WHERE iID = 1072,

5 MENUS FOR THE ANALGESIA DATABASE 172

UPDATE ITEM SET ilnitial =
'V->&FindTotal->&FromMicrograms’
WHERE iID = 1071;

UPDATE ITEM SET ilnitial =
'V->QUERY(SELECT oMade FROM EPOCH WHERE epoch = $[])->
SPLIT()->BURY->&ShortDate->
DIGUP->
SPLIT(:)->DISCARD->
"$[$[:$["
WHERE iID = 1074;

In the above we split the timestamp into date and time (on the intervening
space). We then split the time into HH MM SS, discarding the seconds.

5.18.3 Regional help menu

Note that in the initialisation of this menu we use EpR and not prQ, as EpR is
required by the regional query procegstchEpi

UPDATE ITEM SET iResponse = 'MENU(RGNHX)’
WHERE ilID = 904,

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (952, 20, 'Regional Problems (+)’, 'RGNHX’);
UPDATE ITEM SET ilnitial =
'NAME(EpR)->&FindRegional->SET(EpR)’
WHERE iID = 952;
-- find regional process (EpR) to which observations will be attached

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (952, 952, 952, O,
0.001, 0.001, 0.990, 0.990, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1110, 8, ’'[No Regional history], 'PnHx’, ", 12);
--- polymenu for pain data

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1114, 1, -, ’'DtTm’, ", 1)
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1113, 1, ', ’'RMot, ”, 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1112, 1, ', 'RPre’, ", 1);
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)

5 MENUS FOR THE ANALGESIA DATABASE 173

VALUES (1111, 1, ', 'RSit, ", 1);
-- motor/pressure areas/site [OK signalled by a -, otherwise if problem "x"

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1114, 1110, 1114, 1, 'Date/time’, 0.45);
--- date/time of observation column

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1113, 1110, 1113, 2, 'Motor’, 0.18);
-- Motor

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1112, 1110, 1112, 3, 'Press’, 0.18);
-- pca tries

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1111, 1110, 1111, 4, 'Site’, 0.18);
-- pca total dose

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (1110, 952, 1110, 22,
0.001, 0.01, 0.999, 0.850, 0, 0);
--- regional info (1110) into menu

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1120, 2, ‘’Done’, ’done’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (1120, 952, 1120, 10,

0.750, 0.900, 0.200, 0.08, 0, 'green’, 'white’);

UPDATE ITEM SET iResponse = 'MENU(-1)’

WHERE iID = 1120;

We still must initialise the polytable:

UPDATE ITEM SET ilnitial =
'$[EpR]->
QMANY(SELECT epoch FROM EPOCH WHERE Process = $[] ORDER BY epoch)’
WHERE iID = 1110;

...as well as the individual items:

UPDATE ITEM SET ilnitial =
"'Motor"->V->&FetchEpi->COPY->ISNULL->NOT->SKIP->RETURN->SKIP->RETURN(+)->"-"
WHERE iID = 1113;

5 MENUS FOR THE ANALGESIA DATABASE 174

A value of ‘1’ returned by FetchEpi signals that there weo@bnormalities; a
value of zero signals a problem. If FetchEpi found null, then NULL is retuffied.

UPDATE ITEM SET ilnitial =
"Pressure”->V->&FetchEpi->COPY->ISNULL->NOT->SKIP->RETURN->SKIP->RETURN(+)->"-"
WHERE ilD = 1112;

UPDATE ITEM SET ilnitial =
WHERE iID = 1111;

UPDATE ITEM SET ilnitial =
'V->QUERY/(SELECT oMade FROM EPOCH WHERE epoch = $[])->
SPLIT()->BURY->&ShortDate->
DIGUP->
SPLIT(;)->DISCARD->
"1 $[:$0"
WHERE iID = 1114;

Split timestamp into date/time etc.

5.19 Patients without wards

It sometimes happens that a patient is ‘in limbo’, moving between wards; it's also
possible that the person taking down the particulars of a newly referred patient
may have not recorded the ward. Finally, it's common with some computerised
referral systems (no names here) to find that the patient’s ward isn’t represented
in the ‘referral information’. For all of these reasons, we need to have some sort
of ‘staging’ area from which these patients can be moved when their location is
identified. We allocate the ‘ward’ with code 1 as this ‘staging area’.

As a solution to the problem of moving these patients to their final destina-
tions, we attach a complete ‘New patient’ menu to a button in the main menu.
This menu is fairly simple — it contains a polymorphic menu with the identifiers,
and surnames of all such ‘unallocated patients’, with the ability to assign them to
a ward using a pop-menu of ward identifiers. Here’s the menu:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (890, 20, 'New Patients’, 'NEWPTS’);

88|t's interesting to see how scripting fails if we say RETURN(.) instead of a simple RETURN
in the above (on NULL). This is because the remaining NULL value on the stack interferes with
further processing of the row. We need to look at this sort of problem, and protect table drawing
against this [FIX ME]! This problem is further justification for creating a REPLACE function or
other stack manipulation functions.

5 MENUS FOR THE ANALGESIA DATABASE 175

UPDATE ITEM SET ilnitial = 'NAME(id)->NAME(ward)->X->SET(ward)’
WHERE ilD = 890;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (890, 890, 890, O,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

--- Item 401 is a generic menu exit button:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (9001, 890, 401, 10,
0.05, 0.91, 0.200, 0.08, 0, 'green’, 'white’);
--- We also permit an admission button for ’this ward’,
-- using our previous 'Admit’ button (9927).
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (9002, 890, 9927,3, 0.400, 0.91, 0.200, 0.080);

-- We also make use of a former 'more’ button (code 9926):
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (9003, 890, 9926, 99, 0.75, 0.91, 0.200, 0.080);

--- here’s our polymorphic table:
INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (2230,8,[Not found]','nTbl’,10);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (2221, 890, 2230, 1, 0.001, 0.001, 0.999, 0.850);

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (2226, 6, 'w', 'Wd’, '->&ListWards’);
-- this is a poplist

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction, irEnabled)
VALUES (2226, 2230, 2226, 3, 'Ward’, 0.25, 3),
(2227, 2230, 1227, 2, 'ID’, 0.30, 2),
(2228, 2230, 1228, 1, 'Surname’, 0.45, 1);
--- we use items 1227 and 1128 from Menu 918 above.

Here’s the response to clicking on a Ward (to move a patient to a new ward).

UPDATE ITEM SET iResponse = 'V->&SetNewWard->MENU(#0)’
WHERE iID =2226;

5 MENUS FOR THE ANALGESIA DATABASE 176

In this response, before we invoetNewWard, we place the ID of the pa-
tient on the stack above the ID of the ward. On 2007-11-7 we added in an ALERT
to confirm the ward moved to; on 2008-02-25 we made the logical change of con-
firming the movement before it takes place. We have now moved this confirmation
to SetNewWard itself!

Here’s the initialisation of the polymorphic table. It's similarGetBadobs4 Ward
but returns a list of individuals ‘allocated’ to the staging ward #1.

UPDATE ITEM SET ilnitial =

'QMANY (SELECT Person FROM BADOBS WHERE
cold IS NULL AND
bolnactive IS NULL
AND Bed <= 10000)

WHERE iID = 2230;

5.20 Reasons for stopping (880)

We really desire talwaysdocument why PCA or an epidural was stopped. The
WHYSTOP and STOPPROC tables are describedmalgesiaDBpartl.tex—
here we use them.

The basic scenario is:

1. To stop a regional catheter or PCA, we have a ‘Remove PCA and ‘Regional
out’ buttons, or alternatively we might simply click on the [N] button when
the regional/PCA is still recorded in the database as being ‘in’.

2. If we click on one of the ‘Remove’ buttons, we enter a confirmatory menu
which allows us to [Abort] or [Confirm] but confirmation requires that the
most importantreason for cessation has been selected from a poplist of
reasons. On confirmation, this menu is closed so is the calling menu!

3. If we click on an [N] button, we obtain a similar menu, but there is one
difference. This time the calling menu (which is after all the central pain
menu) won't be closed. We thus have a separate menu for this option.

Here’s the first ‘Reason for stopping’ menu which closes not only itself but
also the calling menu! As X, the transfer variable, we submit the process we are
stopping, for example an epidural process.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (880, 20, 'stop’, 'WHYSTOP?);
UPDATE ITEM SET ilnitial = '&SetupStop’

5 MENUS FOR THE ANALGESIA DATABASE

WHERE iID = 880;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (880, 880, 880, O,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (1800, 6, ™, 'rs’,
->&GetStopReasons’);

UPDATE ITEM SET iResponse = 'SET(rstop)’

WHERE ilD = 1800;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1800, 880, 1800, 3,
0.05, 0.15, 0.90, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1801, 1, ’Select reason:’, ’'mdlbl’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1801, 880, 1801, 4,
0.05, 0.05, 0.30, 0.08, 0);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1805, 880, 1805, 5,
0.05, 0.35, 0.30, 0.08, 0);

-- the comment field (item 661 exists already, setting $[comment])

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1806, 880, 661, 3,
0.05, 0.45, 0.90, 0.08, 0);

-- date picker (amended 14-11-7):
-- we use item 1105 which requires NAME(rdate):
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1811, 880, 1105, 7,
0.05, 0.70, 0.35, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1812, 1, ’'Date stopped: (default TODAY)', ’'ds’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,

177

5 MENUS FOR THE ANALGESIA DATABASE 178

miX, miY, miwW, miH, miGroup)
VALUES (1812, 880, 1812, 8,
0.05, 0.60, 0.50, 0.08, 0);

-- abort button:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1807, 2, ‘’Abort’, ‘abrt’, ", 1);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (1807, 880, 1807, 10,

0.05, 0.900, 0.200, 0.08, 0, 'green’, 'white’);

UPDATE ITEM SET iResponse = 'MENU(#1)

WHERE iID = 1807;

-- terminate process:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1810, 2, ’'STOP’, ok, ", 1)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1810, 880, 1810, 11,
0.750, 0.900, 0.200, 0.08, O, 'red’, 'white’);

The response to clicking on ‘STOP’ is now fairly complex. We first record the
reasons for stopping, and we then check to see whether 24 hours have elapsed
since stopping an epidural process (this is because it is possible that the date
recorded for stopping an epidural is not the current date). If 24 haws elapsed
we skip the MENU(#2) command which otherwise discards this and the preced-
ing (regional or pca) menu. Once we've skipped, we thopemenus, the current,
preceding and main pain menu, and enter the RGNCHECK menu. Ultimately,
leaving the RGNCHECK menu will take us to the main menu once more. Note
that X is the process being stopped, hence the modificatidseth

UPDATE ITEM SET iResponse ='&RecordStopReasons->X->
QUERY(SELECT Person FROM PROCESS WHERE process = $[])->
COPY->SetX->
&1s24->BOOLEAN->SKIP->MENU(#2)->
MARK(#0)->POPMENU(#2)->POPMENU(#1)->POPMENU(#0)->UNMARK->MENU(RGNCHECK)’
WHERE iID = 1810;

The above if finicky — we have to SetiK casewe enter the RGNCHECK
menu! (The alternative would be to set one of the X values obtained from POP-
MENU).

We initialise the menu with the routingetupStop.

INSERT INTO FUN (fKey, fBody, fName)

5 MENUS FOR THE ANALGESIA DATABASE 179

VALUES (278,
'NAME(rdate)->NOW->SPLIT()->DISCARD->SET(rdate)->
NAME (patient)->NAME(proctype)->
X->QUERY(SELECT Person,ProcType FROM PROCESS WHERE process = $[])->
SET(proctype)->SET(patient)->
NAME(comment)->NULL->SET(comment)->
NAME(rstop)->NULL->SET(rstop)->
NAME(EpL)->#1->$[patient]->&LastEpoch->SET(EpL)->
"Other Rx"->
$[proctype]->GREATER(#100)->$[proctype]->LESS(#151)->AND->NOT->SKIP->REPLACE(Regional)->
$[proctype]->SAME(#390)->NOT->SKIP->REPLACE(PCA)->
$[proctype]->SAME(#50)->NOT->SKIP->REPLACE(all orals)->
"STOP $[]?"->TITLE’,

'SetupStop’);

In the above we set up the comment, rdate, rstop and proctype variables. We
also find the most recent epoch for the general observation process on this person,
and move the value to the local variable ‘EpL’. This variable is used by

Here’s the simplegetStopReasons which merely retrieves an appropriate list
of pairs — each pair consisting of a stop code and the associated text reason.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (276,

'"QMANY(SELECT whystop,wText FROM WHYSTOP)’,
'GetStopReasons’);

RecordStopReasonsis more tricky. We associate the major reason for stopping
with the process in X, but also terminate this process, and any similar processes.
The latter is a little taxing, as different processes will be associated depending on
whether we're stopping a regional infusion, PCA, or other process.

We rely on values in the local variables rstop and proctype, which must be set
up prior to invocation, as must the local variable ‘comment’!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (277,
'$[rstop]->ISNULL->NOT->SKIP->=Fail(Please choose a reason!)->
KEY (StopProc)->X->$[rstop]->
DOSQL(INSERT INTO STOPPROC(stopproc,Process,Whystop)

VALUES($[].$[.$0))->
$[proctype]->GREATER(#100)->$[proctype]->LESS(#151)->AND->NOT->SKIP->&JustKillRegional->
$[proctype]->GREATER(#259)->$[proctype]->LESS(#300)->AND->NOT->SKIP->&JustKillOther->
$[proctype]->SAME(#390)->NOT->SKIP->&JustKillPca->
$[proctype]->SAME#50)->NOT->SKIP->&JustKillOrals->
$[comment]->ISNULL->NOT->SKIP->RETURN->
KEY(Comment)->X->&ForceEpoch->$[comment]->&FixSQL->
DOSQL(INSERT INTO COMMENT(comment,Epoch,cText)

VALUES($[],$[1,"$0"))",

'RecordStopReasons’);

5 MENUS FOR THE ANALGESIA DATABASE 180

ForceEpoch will create a brand new epoch if none exists for the given process.
This is distinctly unusual, but can occur if e.g. a new oral drug is added, and then
all drugs are cancelled! It would be more honest in the above to attach a comment
to the general (type 1) process than to a particular oral or other drug, when we
terminate all.

JustKillRegional allows us toturn off and removehe regional infusion. It
requiresrdate.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (178,
'$[patient]->#98->#151->&KillDated->
$[patient]->#199->#251->&KillDated->
$[patient]->#299->#351->&KillDated->
&SetNonevent(#1)->
ALERT(Regional terminated)->
$[proctype]->SAME(#110)->SKIP->RETURN->
$[patient]->#99->$[rdate]->"$[] 00:00:00"->&DatedProc’,
'JustKillRegional’);

On 22/1/2008 we fixedustKillRegional so that the date used in establishing
the type 99 reminder process is the date of cessation of the regionalpatick
current date.

The three invocations oKillMany®Procs are needed to remove all instances
of regional catheters and regional infusions (including infusions with PCA, codes
300-350)! We also set up a type 99 process (udhagedProc, which ensures that
later on (the next day?) we perform a check on the results of the regional.

We amended this routine on 2007-11-07 so that the type 99 check doesn’t pop
up for anything other than an epidufdl. This requires use of the $[proctype]
variable by JustKillRegional.

JustKillPca is analogous tdustKillRegional. It requires rdate, the date of
stopping (but no time: at present we won't be that precise)!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (217,
'$[patient]->#389->#391->&KillDated->
&SetNonevent(#2)->
ALERT(PCA terminated)’,

'JustKillPca’);

JustKillOrals is analogous tgustKillPca. On confirmationall current oral
processes are terminated!

89t seems unnecessary and caused a fuss with e.g. sciatic catheters.

5 MENUS FOR THE ANALGESIA DATABASE 181

INSERT INTO FUN (fKey, fBody, fName)
VALUES (219,
'$[patient]->#49->#51->&KillManyProcs->
&SetNonevent(#3)->
ALERT(AIl orals stopped!),

'JustKillOrals);

Note that at present this routine does not ukse.
Here's JustKillOther, similar to JustKillOrals. It can be invoked by clicking
on the relevant [N] button. It too does not requidate at present!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (230,
'$[patient]->#259->#300->&KillManyProcs->
&SetNonevent(#4)->
ALERT(Modalities stopped!)’,

'JustKillOther’);

Here’s a related routing onsiderStopping. It takes a range of process codes,
and if a process is identified in this range, enters the WHYSTOP menu.

INSERT INTO FUN (fKey, fBody, fName)

VALUES (279,

‘&ProcBetween->
COPY->BOOLEAN->SKIP->RETURN->
SETX->MENU(WHYSTOP)’,

'ConsiderStopping’);

See how we pass th@ocesgo the WHYSTOP menu as the transfer variable
X!

5.20.1 The second ‘stop’ menu

Initially we created a second menu, identical to the above, but accessible by a
click on the [N] button of an existing item. We have replaced this with the follow-
ing hacks, intended to compensate for our as yet unresolved problem with menu
invocation from the [N] pushbutton.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (280,
'BURY->&ProcBetween->DIGUP->SWOP->

BOOLEAN->NOT->SKIP->=HackB->
&SetNonevent’,
'HackA);

5 MENUS FOR THE ANALGESIA DATABASE 182

INSERT INTO FUN (fKey, fBody, fName)
VALUES (281,
'COPY->SAME(#1)->NOT->SKIP->REPLACE(Regional)->
COPY->SAME(#2)->NOT->SKIP->REPLACE(PCA)->
COPY->SAME(#3)->NOT->SKIP->REPLACE(Oral Rx)->
COPY->SAME(#4)->NOT->SKIP->REPLACE(Miscellaneous Rx)->
ALERT($[] exists! You might wish to view this. Click on [Y], not [N]!),
'HackB’);

5.21 Loggingin (899)

Your narne?
w lo van Schalkwyk

@ I your D Mo, 17

[HS [es]

Figure 16: Logging in

We need to identify the current user. Although this simple screen will actually be
the first one, in our documentation we've left it until last!

At present we do NOT require input of a password or other identification,
simply asking “Are you such-and-such”.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (899, 20, 'Honest log-in’, "MAIN’);
UPDATE ITEM SET ilnitial = 'NAME(me)->NULL->SET(me)’
WHERE ilD = 899;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (899, 899, 899, 0,
0.001, 0.001, 0.990, 0.990, 0);
--- Self-reference.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (897, 1, ’Your name?,);

5 MENUS FOR THE ANALGESIA DATABASE

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (897, 899, 897, 3,
0.03, 0.02, 0.25, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (896, 6, ", ’'User, '->&ListUsers");
UPDATE ITEM SET ilnitial = '?” WHERE iID = 896;
UPDATE ITEM SET iResponse ='SET(me) WHERE ilD = 896;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (896, 899, 896, 3,
0.03, 0.12, 0.85, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (898, 2, ’Enter, 'ntr, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (898, 899, 898, 10,
0.400, 0.600, 0.200, 0.08, 0, 'green’, 'white");

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (894, 1, ™, ")

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (894, 899, 894, 3,
0.03, 0.90, 0.55, 0.08, 0);

183

UPDATE ITEM SET ilnitial = 'NOW->"Date and time: $[]" WHERE iID = 894,

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (893, 2, ’'Bad date/time (fix)', ");

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (893, 899, 893, 10,
0.10, 0.800, 0.80, 0.08, 0O, 'red’, 'white’);
UPDATE ITEM SET iResponse = 'MENU(FIXTIME)" WHERE iID = 893;

-- and an ’about’ button:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (895, 2,)

5 MENUS FOR THE ANALGESIA DATABASE 184

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (895, 899, 895, 3,
0.90, 0.01, 0.05, 0.08, 0);

UPDATE ITEM SET iResponse = 'ALERT(PainForm v 0.95. Copyright (C) J van Schalkwyk 2004-20C

It's a good idea to display the current date and time, and to insert an 'Abort’
button for the user who discovers that the date/time is incorrect. Perhaps have
instructions about how to alter this on the PDA!

Here’s the crucial response to pressing ‘Enter’:

UPDATE ITEM SET iResponse =
'$[me]->ISNULL->NOT->SKIP->=Fail(Please say who you are!)->
$[me]->Confirm(ls your ID No. $[]?)->SKIP->STOP->
$[me]->INTEGER->SETME->
&FlagRecent->
MENU(MAIN2)’

WHERE iID = 898;

Now for the function which lists all potential users:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (245,

'#0->
QMANY(SELECT PERSON.person,PERSDATA.pdoForename,PERSDATA.pdoSurname
FROM PERSDATA,EPOCH,PROCESS,PERSON WHERE
PERSDATA.Epoch = EPOCH.epoch AND
EPOCH.Process = PROCESS.process AND
PROCESS.Person = PERSON.person AND
PROCESS.rEnd IS NULL AND
PERSON.pStatus > 1)->
#0->BURY->
REPEAT(&ProcessUserNames)->DISCARD->
REPEAT(&Retrieve)’,

‘ListUsers’);

The above is mildly in error as it assumes that the PERSDATA table entry is
unique for each person (We might make this mandatory for the PDA, but on the
desktop it is possible that e.g. the surname might have changed). We also don'’t
use the denormalised pdoPerson field, which would simplify things (but introduce
hidden users with an rEnd which is not null). We not only ignore patients (pSta-
tus = 1) but also ignore ‘virtual’ people (used to signal e.g. referral to another
discipline on discharge) who have a pStatus of zero.

5 MENUS FOR THE ANALGESIA DATABASE 185

INSERT INTO FUN (fKey, fBody, fName)
VALUES (246,
'COPY->SAME(#0)->NOT->SKIP->STOP->
"$[] $[]"->BURY->BURY’,

'ProcessUserNames’);

In the above, we have to generatairs of data: one component of the pair is
a text string containing forename and surname, the second is the unique ID of that
person. The surname and forename are on the top of the stack so we compound
and bury these before burying the ID.

5.22 An Introductory Screen (970)

On rolling out the database, some users found that the PDA screens above are
a bit inscrutable, and wanted a better overview of what’s going on. This seems
reasonable, and the INTRO menu is designed to address this need. This menu is
read-only, apart from the facility for moving the patient to another ward. It has
the following contents:

1. The most recent operation date (in short form e.g. 22/7), and the operation
description (but no type);

2. Entries for EPIdural and PCA. If these are active, we say e.g. D3; if histor-
ical, we give a short date range e.g. 22/7-25/7.

3. Tick boxes to indicate whether a problem has been flagged for the patient in
the last twenty four hours, and whether they are on ketamine;

4. Four lines for the four most recent comments
5. A pop-menu to allow changing of the ward
6. Buttons to go Back or ‘Add Data’'.

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (970, 20, 'Summary’, 'INTRO");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (970, 970, 970, O,
0.001, 0.001, 0.990, 0.990, 0);

We need to intialise this menu, which always accepts the patient ID as ‘X’, the
transfer variable.

5 MENUS FOR THE ANALGESIA DATABASE 186

UPDATE ITEM SET ilnitial =
'X->&FetchldNumber->X->&FetchSurname->TITLE($[] : $[)->
NAME (ward)->
NAME(id)->X->SET(id)’
WHERE iID = 970;

The above caching was formerly started witllinterDetailMenu. The [id]
variable is a hack, to satisfy ReadmitPatient. [FIX ME]. We now start caching
sooner, so our back button must UNCACHE.

-- a Back button
INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1970, 2, ’'Back’, ’cbtn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1970, 970, 1970, 39,
0.05, 0.910, 0.200, 0.08, 0, 'green’, 'white’);
UPDATE ITEM SET iResponse = 'UNCACHE(EPOCH)->UNCACHE(PROCESS)->MENU(1)’
WHERE iID = 1970;

-- the 'Add data’ button:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1971, 2, °'Add data..’, ’'cbtn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1971, 970, 1971, 41,
0.50, 0.91, 0.45, 0.08, 0, 'red’, 'white’);
UPDATE ITEM SET iResponse = '&EnterDetailMenu’
WHERE iID = 1971;

-- Operation (Op:)
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1972, 1, ’'No operation documented’, ’'mp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1972, 970, 1972, 1,
0.01, 0.20, 0.98, 0.08, 1);
-- group of 1 means ’clickable’

If an operation exists, we replace ‘No operation’ as follows.

UPDATE ITEM SET ilnitial =
'&LastOp->QOK->SKIP->RETURN->
"$[: $[" WHERE ilID = 1972;

Here’s the routine to determine the most recent operation date and name. If
the SQL fails we return nothing. Callers depend on QOK.

5 MENUS FOR THE ANALGESIA DATABASE 187

INSERT INTO FUN (fKey, fBody, fName)
VALUES (290,
'X->QMANY (SELECT MAX(process) FROM PROCESS
WHERE PROCESS.Person = $[] AND
PROCESS.ProcType = 500)->QOK->SKIP->RETURN->
COPY->
QUERY(SELECT COMMENT.cText FROM
COMMENT,EPOCH WHERE
COMMENT.Epoch = EPOCH.epoch AND
EPOCH.Process = $[])->QOK->SKIP->"unspecified procedure"->BURY->
QUERY(SELECT rStart FROM PROCESS WHERE process = $[])->
SPLIT()->DISCARD->&ShortDate->
DIGUP’,

‘LastOp’);

UPDATE ITEM SET iResponse =
'&LastOp->QOK->SKIP->RETURN->
SWOP->DISCARD->Alert’
WHERE iID =1972;

We will have a ‘regional’ line which specifies the type of regional (if used),
and either thelaye.g. D3, or, if already removed, the range of short dates during
which the most recent regional was in.

- Rgnl: (? e.g. 'Epi’ ...)

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1973, 1, ’'No regional’, ’'mp");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1973, 970, 1973, 2,
0.01, 0.30, 0.90, 0.08, 0);

UPDATE ITEM SET ilnitial =
"X->QMANY(SELECT MAX(process) FROM PROCESS
WHERE PROCESS.Person = $[] AND
PROCESS.ProcType > 101 AND
PROCESS.ProcType < 159)->QOK->SKIP->RETURN->
QUERY(SELECT PROCTYPE.rptNature,
PROCESS.rStart,PROCESS.rEnd
FROM PROCESS,PROCTYPE WHERE
PROCESS.process = $[] AND
PROCESS.ProcType = PROCTYPE.proctype)->
&TinyStamp->COPY->ISNULL->NOT->SKIP->REPLACE(now)->BURY->
&TinyStamp->
DIGUP->"$[]: $[]--$[]" WHERE iID = 1973;

5 MENUS FOR THE ANALGESIA DATABASE 188

In the above we find (the last) putative regional and if it exists, get start and
possibly end times. We convert the start time to a short date, and likewise for the
end time if it exists.

- PCA:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1976, 1, 'No PCA’, ’'pca’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1976, 970, 1976, 2,
0.01, 0.40, 0.10, 0.08, 0);

The following initialisation of the PCA might share a common routine with
the regional one:

UPDATE ITEM SET ilnitial =
"X->QMANY(SELECT MAX(process) FROM PROCESS
WHERE PROCESS.Person = $[] AND
PROCESS.ProcType = 390)->QOK->SKIP->RETURN->
QUERY(SELECT PROCESS.rStart,PROCESS.rEnd
FROM PROCESS WHERE PROCESS.process = $[])->
&TinyStamp->COPY->ISNULL->NOT->SKIP->REPLACE(now)->BURY->
&TinyStamp->
DIGUP->"PCA: $[]--$[]" WHERE ilD = 1976;

-- Ketamine tickbox (ever)

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (1974, 1, ‘’Ketamine’, ’'mp’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1974, 970, 1974, 3,
0.01, 0.50, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1984, 3, ", ’ket);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (1984, 970, 1984, 4,
0.28, 0.50, 0.07, 0.08, 0, 0);

UPDATE ITEM SET ilnitial =

'X->QUERY(SELECT PROCESS.process FROM RX,PROCESS WHERE
RX.Drug = 5001 AND
RX.Process = PROCESS.process
AND PROCESS.Person = $[])->QOK->SKIP->RETURN(#0)->
BOOLEAN’

WHERE iID = 1984;

5 MENUS FOR THE ANALGESIA DATABASE 189

— this might be a little slow ?
-- Problem(s) tickbox (past 48 hr?)

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1975, 1, ’'Problems’, 'mp");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1975, 970, 1975, 5,
0.50, 0.50, 0.20, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (1985, 3, ", 'prb");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (1985, 970, 1985, 6,
0.75, 0.50, 0.07, 0.08, 0, 0);

UPDATE ITEM SET ilnitial =
'#1->X->&LastEpoch->
QUERY(SELECT ISPROBLEM.prisOrNot FROM ISPROBLEM
WHERE ISPROBLEM.Epoch = $[])) WHERE iID = 1985;

We've also moved various 'FYI’ fields from the previous ‘Alert screen’ to
here:

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (161, 1, ‘'Wt(kg), ‘wtl);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (161, 970, 161, 18,
0.28, 0.01, 0.20, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (162, 1, ", ‘'wt);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (162, 970, 162, 19,
0.48, 0.01, 0.20, 0.08, 0);
UPDATE ITEM SET ilnitial = '&FetchWeight WHERE iID = 162;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (163, 1, ’Age(yr), ‘ay’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (163, 970, 163, 3,
0.63, 0.01, 0.20, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE 190

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (164, 1, 7, 'yr);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (164, 970, 164, 3,
0.87, 0.01, 0.20, 0.08, 0);
UPDATE ITEM SET ilnitial = '&FetchAge’ WHERE iID = 164;

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (134, 1, 'ASA’, ’'Asa’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (35, 970, 134, 3,
0.03, 0.010, 0.15, 0.08, 0);
UPDATE ITEM SET ilnitial = '&FetchASA->"ASA $[]" WHERE iID = 134;
-- asa rating

INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (131, 1, ‘’Given:, ’Surl’, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (36, 970, 131, 2,
0.35, 0.111, 0.75, 0.08, 0);
-- forename

UPDATE ITEM SET ilnitial =
'X->&FetchForename->"Given: $[]"” WHERE ilD = 131,

INSERT INTO ITEM (iID, iType, iText, iName, iList)
VALUES (138, 6, ", 'Wd’, '->&ListWards’);
UPDATE ITEM SET ilnitial = '&GetMyWard’ WHERE iID = 138;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (38, 970, 138, 3,
0.03, 0.111, 0.29, 0.08, 0);

Here’s the response to changing the ward:

UPDATE ITEM SET iResponse = 'X->&SetNewWard" WHERE iID = 138;

The above confirmation might profitably be moved to within SetNewWard!
The following displays the 3 most recent comments:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1977, 8, ’'[No comments], 'C’, ", 4);
-- 3 lines + header!

5 MENUS FOR THE ANALGESIA DATABASE 191

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1777, 1977, 644, 1, 'Date’, 0.25);
--- date of epoch column (we discard time component of timestamp)

INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder, irName, irFraction)
VALUES (1778, 1977, 645, 2, 'Comment’, 0.75);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miEnabled)
VALUES (1978, 970, 1977, 22,
0.001, 0.57, 0.999, 0.30, 1, 0);
-- group of 1 forces all comments to be clickable!!

Here’s the initialisation function:

UPDATE ITEM SET ilnitial =
'X->QMANY(SELECT COMMENT.comment FROM COMMENT,EPOCH,PROCESS
WHERE COMMENT.Epoch = EPOCH.epoch AND EPOCH.Process = PROCESS.process
AND PROCESS.ProcType <> 500
AND PROCESS.Person = $[] ORDER BY COMMENT.comment DESCY’
WHERE iID = 1977;

We exclude comments on surgery (process type 500)!
We also have an added [All comments] button:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (1158, 2, 'All comments’, 'c¢’, ”, 1),
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1979, 970, 1158, 23,
0.6, 0.59, 0.38, 0.07, 0);

-- Ward alteration [? also bed?]

-- that's it!

5.23 Error documentation: 980

There are potential medicolegal implications to documentation of errors as part of
an activity which is not necessarily legally protected, but these are outweighed (in
my opinion anyway) by the advantages which might potentially accrue to patients
if errors are clearly recorded and ultimately acted upon to change the system in
which they occurred.

We provide the opportunity for clinicians to record errors simply. First consult
the documentAnalgesiaDBpartl.texo view the structure of the PAINERROR
menu, and then return here.

5 MENUS FOR THE ANALGESIA DATABASE 192

5.23.1 The PROCERROR menu: 960

Our initial PROCERROR menu will simply list processes for a particular patient.
Initially we will limit these to processes with a ProcType under 999, encompassing
all processes apart from the high processes associated with systemic problems
etc®

We create a menu, and within it have a table of short dates, process names,
and associated drugs (if present). We order by date (DESC) and perhaps also by
process id.

-- the menu itself:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (960, 20, 'Select error domain’, 'PROCERROR’);
UPDATE ITEM SET ilnitial = "
WHERE iID = 960;
-- in the above should get&show NHI
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (960, 960, 960, O,
0.001, 0.001, 0.990, 0.990, 0);

Here simply have big polymorphic table; Back/Abort and More buttons.

INSERT INTO ITEM (ilD, iType, iText, iName)

VALUES (962, 1, 'Date’, dt’),
(963, 2, 'What', ‘'wh'),
(964, 1, 'Drug’, ar’);

-- create polymorphic table
INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (965,8,'[No process!]’,'prTbl’,8);

-- insert table into menu
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miw, miH)
VALUES (965 ,960, 965, 0, 0.001, 0.09, 0.99, 0.80);

-- make table columns
INSERT INTO ICOLTABLE (irKey, irTBL, irltem, irOrder,
irName, irFraction, irEnabled)

VALUES (962, 965, 962, 1, 'Date’, 0.15, 0),
(963, 965, 963, 2, ° What, 0.45, 1),
(964, 965, 964, 3, 'Drug’, 0.40, 0),

9wWe might consider addinall processes.

5 MENUS FOR THE ANALGESIA DATABASE 193

-- [back] button: uses old button #201
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (966, 960, 201, 7,
0.01, 0.91, 0.16, 0.08, O, 'red’, ’'white’);

-- 'more’ button: (use old #9926)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (967, 960, 9926, 99,
0.75, 0.91, 0.200, 0.08, 0O, 'yellow’, 'black’);

We initialise the table:
UPDATE ITEM SET ilnitial =

'X->QMANY(SELECT process FROM PROCESS WHERE Person = $[] AND ProcType < 1000)
WHERE iID = 965;

Get the process type description:
UPDATE ITEM SET ilnitial = 'V->QUERY(SELECT PROCTYPE.rptNature FROM PROCTYPE,PROCES

WHERE PROCTYPE.proctype = PROCESS.Proctype AND
PROCESS.process = $[])’ WHERE iID = 963;

Create a response to clicking on a given process:

UPDATE ITEM SET iResponse = 'V->SETX->MENU(ERR)" WHERE iID = 963;

Get the process date:

UPDATE ITEM SET ilnitial = 'V->QUERY(SELECT rStart FROM PROCESS
WHERE process = $[])->SPLIT()->DISCARD->&TinyStamp’ WHERE ilD = 962;

Get (any) associated drug:

UPDATE ITEM SET ilnitial = 'V->QUERY(SELECT DRUG.dTrade FROM DRUG,RX
WHERE DRUG.drug = RX.Drug AND RX.Process = $[])->QOK->SKIP->"-"->RETURN’
WHERE ilD = 964,

A click on the button describing the process invokes the ERR menu with that
process as X.

5 MENUS FOR THE ANALGESIA DATABASE 194

5.23.2 The ERR menu
We will submit as X, the transfer variable, the ID (key) of a particular PROCESS.

-- the menu itself:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (980, 20, 'Record error’, 'ERR);

Let’'s set up some local variables, and find the most recent epoch for this pro-
cess now! We assume X is the process.

UPDATE ITEM SET ilnitial = 'NAME(err)->NAME(date)->NAME(note)->
NAME(EpL)->NAME(procstart)->NAME(procend)->NAME (isps)->NAME(ispe)->
#0->SET(isps)->#0->SET(ispe)->
X->QMANY(SELECT MAX(epoch) FROM EPOCH

WHERE Process = 9$[])->QOK->SKIP->#0->SET(EpL)->
$[EpL]->NOT->SKIP->RETURN->
X->&NewEpoch->SET(EpL)’

WHERE iID = 980;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (980, 980, 980, O,
0.001, 0.001, 0.990, 0.990, 0);

-- text label:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (780, 1, 'Type’, ");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (780, 980, 780, 1,
0.03, 0.05, 0.20, 0.08, 0);

-- list of errors:
INSERT INTO ITEM (ilD, iType, iText, iName, iList)
VALUES (781, 6, ", ’et, ->&ListErrs’);
UPDATE ITEM SET ilnitial = '?” WHERE iID = 781;
UPDATE ITEM SET iResponse ='SET(err)) WHERE iID = 781;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (781, 980, 781, 2,
0.28, 0.05, 0.65, 0.08, 0);

-- date+its label: 782/783 (order 3/4)

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (782, 1, ’'Date of error, ™);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

5 MENUS FOR THE ANALGESIA DATABASE 195

VALUES (782, 980, 782, 3,
0.03, 0.25, 0.30, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (783, 12, 7, 'dY;
-- type is 12 for date picker!
UPDATE ITEM SET ilnitial =
'NOW->SPLIT()->DISCARD->COPY->SET(date) WHERE ilD = 783;
UPDATE ITEM SET iResponse = 'SET(date)’ WHERE ilID = 783;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (783, 980, 783, 4,
0.40, 0.25, 0.40, 0.08, 0);

-- mandatory comment+label: 784/785 (order 5/6)
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (784, 1, ’'Comment’, ");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (784, 980, 784, 5,
0.03, 0.34, 0.20, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (785, 10, 7, ’ctxt’, ", 1)
UPDATE ITEM SET iResponse = ’'set(note) WHERE ilD = 785;

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (785, 980, 785, 5,
0.03, 0.42, 0.94, 0.08, 0);

-- [abort] button: 786 (order 7) uses old button #3830
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (786, 980, 80, 7,
0.05, 0.90, 0.200, 0.08, O, 'red’, 'white’);

-- [Report error] button (order 8)
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (787, 2, 'Report error’, 'ntr, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (787, 980, 787, 10,
0.50, 0.90, 0.400, 0.08, 0, 'green’, 'white’);
UPDATE ITEM SET iResponse = '&ReportError WHERE iID = 787;

ReportErroris a tad clumsy, as it assumes the existence of the variables err,
date and note, all of which must be non-null. (Date will by default be today). If

5 MENUS FOR THE ANALGESIA DATABASE 196

valid, we insert a record of the error, including the current EPOCH, which must
be present in $[EpL].

INSERT INTO FUN (fKey, fBody, fName)
VALUES (292,

‘$lerr]->ISNULL->NOT->SKIP->=Fail(Select an error)->
$[note]->ISNULL->NOT->SKIP->=Fail(Please insert mandatory comment!)->
$[note]->$[date]->
CONFIRM(Document error "$[]” on date $[]?)->SKIP->RETURN->
KEY (Painerror)->$[err]->$[date]->$[note]->&FixSQL->$[EpL]->
DOSQL(INSERT INTO PAINERROR(painerror,Errtype,ErrStamp,peText,Epoch)

VALUES($[],$[], TIMESTAMP "$[] 00:00:00”,”$[]”,$[1))->

ALERT(Error recorded!)->MENU(1)’,

'ReportError’);

Here’s the ListErrs routine that lists all potential error types. As usual for
pop-lists, we retrieve the codandthe text.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (293,
'QMANY(SELECT errtype,etText FROM ERRTYPE WHERE cold IS NULL)’,
'ListErrs’);

It's attractive here to permit actual alterations to process start and end dates.
We will limit such alterations to processes with a ProcType between 50 and 500
(inclusive), and must ensure that the rEnd is not null. In addition, we will only
permit alteration of start dates if we are on the PDA with a temporary process key
value (over 8999999999).

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (793, 12, 7, 'd);
-- type is 12 for date picker!
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (793, 980, 793, 4,
0.40, 0.60, 0.40, 0.08, 0);

-- start date label:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (794, 1, ‘'Process START', ")
UPDATE ITEM SET ilnitial = '$[isps]->SKIP->STOP' WHERE iID = 794;
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (794, 980, 794, 3,
0.03, 0.60, 0.30, 0.08, 0);

The intialisation is rather intricate, as we only accept alterations tettreif
the process is local to the PDA:

5 MENUS FOR THE ANALGESIA DATABASE 197

UPDATE ITEM SET ilnitial =
'X->GREATER(#899999999)->SKIP->STOP->
X->QUERY(SELECT rStart FROM PROCESS WHERE process = $[] AND
ProcType > 49 AND ProcType < 501)->
QOK->SKIP->STOP->SPLIT()->DISCARD->COPY->SET(procstart)->#1->SET(isps)’
WHERE ilD = 793;

5.23.3 Error buttons

We still need to insert error buttons in the relevant menus. Let’s try the PCA menu
first:

INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (788, 2, ’'Oops’, ’'ntr, ", 1)

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)

VALUES (788, 914, 788, 10,

0.50, 0.90, 0.18, 0.08, 0, 'red’, ’'white’);

UPDATE ITEM SET iResponse = 'MENU(PROCERRORY)’

WHERE iID = 788;

We can put the identical button in five other menus:

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (789, 904, 788, 10,
0.50, 0.90, 0.18, 0.08, 0O, 'red’, 'white’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (790, 915, 788, 10,
0.50, 0.90, 0.18, 0.08, 0, 'red’, 'white’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (791, 2915, 788, 10,
0.50, 0.90, 0.18, 0.08, 0, 'red’, ’'white’);
-- "ALERTS:" menu (top right part)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (792, 909, 788, 10,
0.80, 0.02, 0.18, 0.08, 0, 'red’, ’'white’);
-- and into the entry menu too:
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (152, 903, 788, 50,
0.40, 0.91, 0.18, 0.08, 0, 'red’, ’'white’);

Finally, here’s the routine tensurewe submit a valid epoch to the ERR menu.
We assume the existence of EpQ and prQ, and a valid number in prQ.
[NO. DELETE ME]

5 MENUS FOR THE ANALGESIA DATABASE 198

INSERT INTO FUN (fKey, fBody, fName)
VALUES (294,
'$[EpQ]->SAME(#0)->SKIP->RETURN->$[prQ]->&NewEpoch->SET(EpQ)’,
'EnsureEpoch’);

5.24 Frills
5.24.1 Alter the date (991)

Here we create a menu which permits the user to change the date and time without
leaving PainForm.

-- the menu itself:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (991, 20, 'Fix Time/Date’, 'FIXTIME’);
UPDATE ITEM SET ilnitial = 'NAME(h1)->NAME(h2)->NAME(m1)->NAME(m2)->NAME(date)’
WHERE iID = 991,
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (991, 991, 991, O,
0.001, 0.001, 0.990, 0.990, 0);

Next, Change and Abort buttons:

-- 80 is previously defined 'Abort’ button
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1991, 991, 80, 1,
0.05, 0.90, 0.25, 0.08, 0, 'green’, 'white’);

INSERT INTO ITEM (iID, iType, iText, iName, iList, iLines)
VALUES (1992, 2, 'Set Time’, 'a’, ”, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (1992, 991, 1992, 2,
0.75, 0.90, 0.25, 0.08, 0, 'red’, 'white’);

UPDATE ITEM SET iResponse =
'$[date]->$[h1]->$[h2]->$[Mm1]->$[m2]->
"$[] $[$[]:$[]$[]:00"->COPY->TIMESTAMP->
SETTIME->SKIP->=Fail(Bad date/time: $[]!)->MENU(#1) WHERE iID = 1992;

Finally, the date, hour and minute digit buttons:

-- 'Date’ label:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1994, 1, ’'Date,d);

5 MENUS FOR THE ANALGESIA DATABASE 199

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1994, 991, 1994, 3,
0.03, 0.25, 0.40, 0.08, 0);

-- date box (itype 12 = date picker)
INSERT INTO ITEM (ilD, iType, iText, iName, iLines)
VALUES (1993, 12, ", ‘'db’, 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1993, 991, 1993, 4,
0.35, 0.25, 0.30, 0.08, 0);
UPDATE ITEM SET ilnitial = 'NOW->SPLIT()->DISCARD->COPY->SET(date)’ WHERE iID = 1993;
UPDATE ITEM SET iResponse = 'SET(date)’ WHERE iID = 1993;

-- 'time’ label
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (1995, 1, 'Time’, 't);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1995, 991, 1995, 5,
0.03, 0.50, 0.30, 0.08, 0);

-- individual poplists H H : M M

INSERT INTO ITEM (ilD, iType, iText, iList)
VALUES (1996, 6, 2, '010111112]2]');
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1996, 991, 1996, 6,
0.15, 0.50, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse = 'SET(hl)’ WHERE ilD = 1996;

INSERT INTO ITEM (ilD, iType, iText, iList)
VALUES (1997, 6, '?’, '0]0]1|1]2]2|3]3]4|4]5]5]616]7]718]8]919]');
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1997, 991, 1997, 7,
0.30, 0.50, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse = 'SET(h2)’ WHERE iID = 1997;

-- colon :
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (1990, 1,)
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1990, 991, 1990, 5,
0.45, 0.50, 0.03, 0.08, 0);

5 MENUS FOR THE ANALGESIA DATABASE 200

INSERT INTO ITEM (ilD, iType, iText, iList)
VALUES (1998, 6, 2", '0]0]1|1]2]2]3]3]4]4|5]5]6]6]);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (1998, 991, 1998, 8,
0.50, 0.50, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse = 'SET(m1)’ WHERE ilD = 1998;

INSERT INTO ITEM (ilD, iType, iText, iList)
VALUES (1999, 6, '?’, '0]0]1|1]2]2|3]3]4]4|5]5|6]6]717]8|8]9]9]');
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (1999, 991, 1999, 9,
0.65, 0.50, 0.15, 0.08, 0);
UPDATE ITEM SET iResponse = 'SET(m2) WHERE ilD = 1999;

6 FLAGGING CERTAIN PATIENTS 201

6 Flagging certain patients

It's highly convenient to be able to flag certain patients as ‘special’ in a dynamic
way. This capability should include:

1. Patients not yet seen today;
2. Patients identified (at any time) as having ‘problems’;

3. Patients currently flagged for ‘PM review’.

Central to our strategy is the boFlag field in the BADOBS table. We clear
all such BADOBS flags for a particular patient to NULL when we discharge a
patient, so we are only interested in fields with a value of 0 or 1. The value 1 says
we are interested in this field, and we can set it in the circumstances listed above.

First we need to be able to identify patients flagged as ‘alerted’. This is trivial,
given the BADOBS key value on the stack — we simply interrogate the relevant
boFlag:

INSERT INTO FUN (fKey, fBody, fName)VALUES(260,

'QUERY(SELECT boFlag FROM BADOBS
WHERE badobs = $[])->
QOK->SKIP->FAIL->
COPY->
ISNULL->NOT->SKIP->FAIL->
BOOLEAN’,

'‘GetAlert));

We fail (preventing creation of any tickbox) if the value is NULL (patient dis-
charged). Otherwise we return 1 or 0. We assume a valid key has been submitted
on the stack. But how do we set the boFlag value to 1?

6.1 Patients not yet seen

First, let’s look at patients ‘not seen today’. This routine is invoked when we first
enter the PDA program! After setting all relevant flags to 1, we will clear the
boFlag in BADOBS to 0 if an EPOCH exists for a particular patient for today.
Clumsy but it works: we must however examine speed issues with large numbers
of observations [CHECK ME].

INSERT INTO FUN (fKey, fBody, fName)
VALUES (258,
'DOSQL(UPDATE BADOBS SET boFlag=1 WHERE bolnactive IS NULL AND

6 FLAGGING CERTAIN PATIENTS 202

boFlag IS NOT NULL)->

MARK (#0)->
#0->
NOW->SPLIT()->DISCARD->
QMANY(SELECT DISTINCT PROCESS.Person FROM EPOCH,PROCESS
WHERE EPOCH.oMade > TIMESTAMP "$[] 07:00:00” AND
EPOCH.oLength IS NOT NULL AND

EPOCH.Process = PROCESS.process)->
REPEAT(&UnFlagMe)->
DISCARD’,

'FlagRecent’);

On 2007-12-09 we altered the timestamp from 00:00:00 to 08:00:00. If some-
body has been seen in the wee hours, surely they need to be seen again that day!
Better is perhaps 07:00 as otherwise if the round starts a bit early, patients are
flagged as ‘not seen’! Another refinement is to only use epochs with an oLength
value over zero.

We will use a NULL boFlag to indicate a patient who has been discharged!
For each patient to be flagged we do the following:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (259,

'COPY->BOOLEAN->SKIP->STOP->

DOSQL(UPDATE BADOBS SET boFlag=0 WHERE Person = $[]
AND boFlag = 1),
'UnFlagMe’);

The initial copy and test identifies the zero at the bottom of the stack of patients
to flag. We reset the flag to zero if an observation exists for today for that patient,
leaving the rest of the patients with a flag value of 1 (thayen’tbeen seen).

6.2 Patients with ‘a problem’

Problems are recorded as an ISPROBLEM table entry, which relates to an epoch
on the relevant process. Our generic ‘problem’ entry is recorded related to an
EPOCH on the process with ID 1, and this is the one we look for. The routine is
similar to the previous one (FlagRecent), and we only look for problems flagged
since midnight!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (268,
'DOSQL(UPDATE BADOBS SET boFlag=0 WHERE bolnactive IS NULL AND
boFlag IS NOT NULL)->
MARK(#0)->
#0->

6 FLAGGING CERTAIN PATIENTS 203

NOW->SPLIT()->DISCARD->
QMANY(SELECT DISTINCT PROCESS.Person FROM ISPROBLEM,EPOCH,PROCESS
WHERE ISPROBLEM.prisOrNot = 1 AND
ISPROBLEM.Epoch = EPOCH.epoch AND
EPOCH.oMade > TIMESTAMP "$[] 00:00:00” AND
EPOCH.Process = PROCESS.process AND
PROCESS.ProcType = 1)->
REPEAT(&YesFlagMe)->
DISCARD’,
'FlagProblem’);

Although we at present look for the ‘any substantial problem’ entry, we might
look for ‘lesser’ problems by simply modifying the above routine to exclude ‘AND
PROCESS.ProcType = 1. The opposite of UnFlagM@asFlagMe!

INSERT INTO FUN (fKey, fBody, fName)
VALUES (269,

'COPY->BOOLEAN->SKIP->STOP->

DOSQL(UPDATE BADOBS SET boFlag=1 WHERE Person = $[]),
'YesFlagMe);

6.3 Patients marked for ‘PM review’

'QUERY(SELECT PROCESS.process FROM PROCESS
WHERE PROCESS.Person = $[]
AND PROCESS.ProcType = 1100
AND PROCESS.fEnd IS NULL)->

Again, not dissimilar from the above but identifying extant ‘PM review’ pro-
cesses is simpléer:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (270,

'DOSQL(UPDATE BADOBS SET boFlag=0 WHERE bolnactive IS NULL AND

boFlag IS NOT NULL)->

MARK(#0)->

#0->

QMANY(SELECT DISTINCT PROCESS.Person FROM PROCESS
WHERE PROCESS.ProcType = 1100
AND PROCESS.rEnd IS NULL)->

QMANY(SELECT DISTINCT PROCESS.Person FROM PROCESS
WHERE PROCESS.ProcType = 110
AND PROCESS.rEnd IS NULL)->

91Also more prone to abuse. Repeated changes will create numerous processes which could
theoretically bring the PDA to its knees.

6 FLAGGING CERTAIN PATIENTS 204

REPEAT(&YesFlagMe)->
DISCARD’,
'FlagPM");

On 5 December 2007 we added the code to also select all epidurals (code 110),
even if they've not been ‘flagged for PM review?!

6.4 Addendum — an epidural pop-up (930)!

Here we include a menu which we pop up the next day, after removal of an epidu-
ral %

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (930, 20, 'Regional Check’, 'RGNCHECK");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (930, 930, 930, 12,
0.000, 0.200, 0.999, 0.999, 0);

Here is the menu initialisation, a lot simpler than the initialisation of menu
904.

UPDATE ITEM SET ilnitial =
'NAME(EpR)->NAME(prR)->

#98->#100->&ProcBetween->
QOK->SKIP->MENU(#1)->SET(prR)->
$[prR]->
QUERY(SELECT ProcType FROM PROCESS WHERE process = $[])->
QUERY(SELECT rptNature FROM PROCTYPE WHERE proctype = $[))->
X->&FetchldNumber->SWOP->
TITLE(S]: $[0)->
NAME(EpL)->#1->X->&LastEpoch->SET(EpL)->
&NewRgnEpoch->SET(EpR)’
WHERE ilD = 930;

We still set the title, and set up the local process variable prR as well as lo-
cating/creating a recent epoch on that process, EpR. The epoch EpL on a type 1
(general) process is needed by NewRgnEpoch as a reference point.

Here’s a function to determine whether a pending check is present. The pro-
cess code for a twenty-four hour check is 99. On 22/1/2008 we amelzdétb
take a single argument, the Person in question, rather than taking this from X. This
is because the transfer variable X can now be other than the person in question!
All references are likewise updated.

92\We need to look into more elegant SQL code.
%That is, if the regional was removed before midnight, we need to do a check on the following
day!

6 FLAGGING CERTAIN PATIENTS 205

INSERT INTO FUN (fKey, fBody, fName)VALUES(261,

'"QUERY(SELECT process FROM PROCESS
WHERE ProcType = 99 AND Person = 3[]
AND rEnd IS NULL)->QOK->SKIP->RETURN(#0)->
COPY->QUERY(SELECT rStart FROM PROCESS WHERE process = $[])->
FLOAT->NOW->FLOAT->SWOP->SUB->FLOAT(0.95)->LESS->SKIP->RETURN->DISCARD->RETURN(
'1s24’);

We return zero if no matching process is found. We have amended 1s24 to pull
out the time, and if more than the arbitrary 0.95 of the day has elapsed (‘close
enough’!), return the process code. The SWOP in the final line is because we
always SUB the top valu&om the bottom one. If the date difference is under
0.95 days, then we skip the return statement and return zero; if greater or equal,
we return the process code!

Here are the various buttons for the 24 hour check menu.

-- ‘done’ button:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (2401, 2, ’'Done’, ’Exitbtn’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup, miPaper, milnk)
VALUES (2401, 930, 2401, 2,
0.750, 0.900, 0.200, 0.08, O, ’'green’, 'white’);

Here’s the response to the ‘Done’ button:

UPDATE ITEM SET iResponse =
'NOW->X->&Is24->
DOSQL(UPDATE PROCESS SET rEnd=TIMESTAMP "$[]" WHERE
process = $[])->
POPMENU(#0)->DISCARD->DISCARD->MENU(PAINDATA)’
WHERE ilD = 2401;

The remaining items include an ‘Ignore’ button.

-- ignore:
INSERT INTO ITEM (ilD, iType, iText, iName, iList, iLines)
VALUES (2415, 2, ‘’lgnore’, ‘ign’, ", 1);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup, miPaper, milnk)
VALUES (2415, 930, 2415, 2,
0.150, 0.900, 0.200, 0.08, O, 'red’, 'white’);
UPDATE ITEM SET iResponse =
'POPMENU(#0)->DISCARD->DISCARD->MENU(PAINDATA)’
WHERE iID = 2415;

6 FLAGGING CERTAIN PATIENTS 206

-- weakness:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2402, 1, ‘’any weakness’, ’prL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2402, 930, 2402, 3,
0.05, 0.10, 0.07, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2403, 4, 'Y’, 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2403, 930, 2403, 3,
0.50, 0.10, 0.07, 0.08, 1);
UPDATE ITEM SET ilnitial = ™Motor"->$[EpR]->&FetchEpi->NOT’ WHERE iID = 2403;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Motor)’
WHERE iID = 2403;
-- 0 signals motor problem

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2404, 4, 'N’, 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2404, 930, 2404, 3,
0.60, 0.10, 0.07, 0.08, 1);
UPDATE ITEM SET ilnitial = ™Motor"->$[EpR]->&FetchEpi’ WHERE iID = 2404,
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Motor)’
WHERE iID = 2404;
-- 1 signals normal motor fx!

-- numbness
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2405, 1, ’any numb areas’, ’prL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2405, 930, 2405, 3,
0.05, 0.20, 0.07, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2406, 4, 'Y', 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2406, 930, 2406, 3,
0.50, 0.20, 0.07, 0.08, 2);
UPDATE ITEM SET ilnitial =
"Level"->$[EpR]->&FetchEpi->#11->SAME’ WHERE iID = 2406;

6 FLAGGING CERTAIN PATIENTS 207

UPDATE ITEM SET iResponse =
'SKIP->RETURN->#11->&RecordEpi(Level)’
WHERE iID = 2406;
-- 11 signals any sensory block
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2407, 4, °'N’, ’'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2407, 930, 2407, 3,
0.60, 0.20, 0.07, 0.08, 2);
UPDATE ITEM SET ilnitial =
"Level"->$[EpR]->&FetchEpi->#12->SAME’ WHERE iID = 2407;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#12->&RecordEpi(Level)’
WHERE iID = 2407;
-- 12 signals normal sensation

-- headache
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2408, 1, ‘’headache’, 'prL’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2408, 930, 2408, 3,
0.05, 0.30, 0.07, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2409, 4, 'Y, 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2409, 930, 2409, 3,
0.50, 0.30, 0.07, 0.08, 3);
UPDATE ITEM SET ilnitial =
""Headache"->$[EpR]->&FetchEpi” WHERE ilID = 2409;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Headache)’
WHERE iID = 2409;
-- 1 signals headache
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2410, 4, 'N’, 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2410, 930, 2410, 3,
0.60, 0.30, 0.07, 0.08, 3);
UPDATE ITEM SET ilnitial =
""Headache"->$[EpR]->&FetchEpi->NOT'" WHERE iID = 2410;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Headache)’
WHERE iID = 2410;

6 FLAGGING CERTAIN PATIENTS

-- 0 signals NO headache

-- pain at site
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2411, 1, ’pain at site’, ’prl’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2411, 930, 2411, 3,
0.05, 0.40, 0.07, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2412, 4, 'Y', ’'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2412, 930, 2412, 3,
0.50, 0.40, 0.07, 0.08, 4);
UPDATE ITEM SET ilnitial =
"'SitePain"->$[EpR]->&FetchEpi’ WHERE ilID = 2412;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(SitePain)’
WHERE iID = 2412;
-- 1 signals site pain
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2413, 4, 'N, ’'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2413, 930, 2413, 3,
0.60, 0.40, 0.07, 0.08, 4);
UPDATE ITEM SET ilnitial =

"SitePain"->$[EpR]->&FetchEpi->NOT’ WHERE iID = 2413;

UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(SitePain)’
WHERE iID = 2413;

-- 0 signals NO site pain

--backache:
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2428, 1, ’backache’, ’prL");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2428, 930, 2428, 3,
0.05, 0.50, 0.07, 0.08, 0);

INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2429, 4, 'Y’, 'prY’);

INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)

208

6 FLAGGING CERTAIN PATIENTS 209

VALUES (2429, 930, 2429, 3,
0.50, 0.50, 0.07, 0.08, 5);
UPDATE ITEM SET ilnitial =
"Backache"->$[EpR]->&FetchEpi’ WHERE ilD = 2429;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Backache)’
WHERE iID = 2429;
-- 1 signals backache
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2430, 4, 'N, ’'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2430, 930, 2430, 3,
0.60, 0.50, 0.07, 0.08, 5);
UPDATE ITEM SET ilnitial =
"Backache"->$[EpR]->&FetchEpi->NOT’ WHERE iID = 2430;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Backache)’
WHERE iID = 2430;
-- 0 signals NO backache

--bladder control:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2416, 1, ‘’incontinent’, ’prL");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2416, 930, 2416, 3,
0.05, 0.60, 0.07, 0.08, 0);

INSERT INTO ITEM (ilID, iType, iText, iName)
VALUES (2417, 4, 'Y, 'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2417, 930, 2417, 3,
0.50, 0.60, 0.07, 0.08, 6);
UPDATE ITEM SET ilnitial =
"Inconti"->$[EpR]->&FetchEpi’ WHERE ilID = 2417;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Inconti)’
WHERE iID = 2417;
-- 1 signals incontinence
INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2418, 4, 'N’, 'prY?");
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2418, 930, 2418, 3,
0.60, 0.60, 0.07, 0.08, 6);

6 FLAGGING CERTAIN PATIENTS 210

UPDATE ITEM SET ilnitial =
"Inconti"->$[EpR]->&FetchEpi->NOT’ WHERE ilD = 2418;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Inconti)’
WHERE iID = 2418;
-- 0 signals NO incontinence

--site check:
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2419, 1, ’site check’, ’prl";
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miwW, miH, miGroup)
VALUES (2419, 930, 2419, 3,
0.05, 0.70, 0.07, 0.08, 0);

INSERT INTO ITEM (iID, iType, iText, iName)
VALUES (2420, 4, ‘fail’, ’'prY?);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2420, 930, 2420, 3,
0.50, 0.70, 0.12, 0.08, 7);
UPDATE ITEM SET ilnitial =
"Site"->$[EpR]->&FetchEpi->NOT’ WHERE ilD = 2420;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#0->&RecordEpi(Site)’
WHERE iID = 2420;
-- 0 signals site problem
INSERT INTO ITEM (ilD, iType, iText, iName)
VALUES (2423, 4, ’'normal’, ’'prY’);
INSERT INTO MENUITEMS (miUid, miMenu, miltem, miOrder,
miX, miY, miW, miH, miGroup)
VALUES (2423, 930, 2423, 3,
0.65, 0.70, 0.20, 0.08, 7);
UPDATE ITEM SET ilnitial =
"'Site"->$[EpR]->&FetchEpi’ WHERE iID = 2423;
UPDATE ITEM SET iResponse =
'SKIP->RETURN->#1->&RecordEpi(Site)’
WHERE iID = 2423;
-- 1 signals site OK

7 PROCESS AND EPOCH CREATION 211

7 Process and epoch creation

We use a fairly complex set of PROCESS table entries to represent processes for
their entire existence. The basic list of process types has been enumerated in the
file AnalgesiaDBpartl.texAncillary processes are contained in frectype.csv

file, generated either fromerlPgm.texor by the creator of a particular PainForm
system. Important processes with their codes include:

1 Data observation (a generic sort of ‘process’)

3 Patient is admitted to hospital;

5 Post-discharge planning;

99 Check of regional 24 hours after discontinuation;

500 Surgical procedure (any)

100-189various regionaprocedures

190 IV access

200-299various modes of drug administration;

300-399 Modalities involving patient-controlled analgesia.

1000-1140Ancillary process types related to organ dysfunction, chronic pain
(1060), PM observation (1100), sedation (1110), blood pressure (1120),
nausea (1130) and bowel opening (1140). The numbering is rather arbi-
trary.

Of the above, an important process is the generic ‘code 1’, which allows all
sorts of observation, including observations describing patient particulars (NHI,
Names). As important as code 1 is code 3, with which we associate bedspace
allocation of a patient! The other process types listed above are largely self-
explanatory. A host of specialised functions serve to create such processes, e.g.

NewRgnProcInfu.

We have defined several functions to facilitate creation of PROCESS entries:

1. ProcAndEpoch is used to create a code 1 process withieateAdmission
andReadmitPatient, together with a code 3 process. ProcAndEpoch makes
anassociatecepoch entry.

%4More correct at present would be to call this ‘room allocation’; although the program has the
capability to represent bedspaces, we limit ourselves to rooms for now.

7 PROCESS AND EPOCH CREATION 212

2. NewProc too creates new process entries, and is used much more widely
(OnOroff, NewRgnProcInfu, GolvPca, NewIvinfuProc, SetDrug, Spawn-
Problem). Also see its usage in the iResponse attached to ITEM with ild
713. The NewProc procedure is similar to ProcAndEpoch, but doesn't cre-
ate the associated epoch.

3. Athird function is®PostDProc which is only used in creating processes used
for ‘discharge planning’.

4. DatedProcis another more fancy version of NewProc, which permits times-
tamping in the past, for example recording prior insertion of an epidural.

5. DatedPandE is a rather clumsy variation on ProcAndEpoch, which does
what DatedProc does, but throws in an epoch too. It's only used within
InsertOpData.

Clearly there’s room for rationalisation of this clumsy set of functions!

7.1 New epochs

After entering the PATIENT menu and selecting a patient, we move on to record
patient details — the relevant function®uterDetailMenu. This function finds
the current type 1 process and attaches a new epoch to this process. This new
epoch is very important for recording general data, but it also has a second pur-
pose. When we exit the final menu for this patient (at whatever exit ‘portal’)
we must set the oLength value to an appropriate number of millise¢én8ee
Section7.2 below.

A new epoch is created in many other ways. The simplest of these is to invoke
NewEpoch (used withinEpidInfuSet, NewRgnProcInfu, IvinfuSet, Newlv-
Druyg, and SpawnProblem). A dressed-up version of NewEpoch4ancyEpoch,
which in addition to producing a new observation, leaves the existing process
code on the stack (Ugh)! FancyEpoch is invoked from withimceEpoch, which
is strangely enough only used in comment creation. Comments are generally at-
tached to an epoch of a type 1 process. (3&&eGeneralComment).

NewRgnEpoch is a rather clumsy epoch-creator, only used in the setup of
menus with item IDs 904 and 930 (See usage).

9Which we do by subtracting the epoch oMade value from the then current time, and converting
into milliseconds.

7 PROCESS AND EPOCH CREATION 213

7.2 End of an epoch

The EndEpoch function is invoked wherever we terminate an epoch. This func-
tion enters a duration value in the oLength field of the relevant entry in the EPOCH
table. The duration is in milliseconds (although effectively we record seconds, as
we're using timestamps accurate to the nearest second). The points at which epoch
termination can occur are:

e Within the FINISH menu;

e When a patient is discharged, whether they diBat{entDied) or were nor-
mally dischargedDoDischarge);

¢ When we return abnormally from the first patient data menu (abort the ses-
sion within the DETAILS menu, code 903).

Clicking on the [Done] button in the FINISH menu (code 909, see Section
5.16) terminates this patient encounter. Abnormal return from the first patient
data menu (DETAILS) occurs when we click on the button with an iID of 132.

7.3 Conventions for epoch variables

It's convenient to store certain special epochs in local variables. Important in this
regard are:

EpQ This epoch-related local variable, accessed usH$EpQ]-> , contains
the most recent epoch associated with an infusion process (in an appropriate
menu). The process is customarily stored in the local varipk@e. The
process might be a straightforward infusion (codes 200-299), or involve
patient-controlled analgesia (process codes 300-399).

EpR Used for the current epoch, which is attached to a process (prR) that de-
scribes a regional procedure. R is for Regional.

EpL Used for a general observational epoch, associated with the current general
observational process. L is for Latest.

8 MENU HIERARCHIES AND CACHING 214

8 Menu hierarchies and caching

This entire section refers only to optimisation of caching on Ri¥A. On the
desktop, we assume (at present) that the SQL is optimised and fast enough. The
fundamental caching principle is that the caching should in no way affect the
logical functioning of our database, in other words, no modification is required to
SQL code when caching is turned on!

We've structured our language to limit the direct transmission of information
between menus to a single number (the X-variable). All other flow of informa-
tion is through the database. This simple approach encourages loose coupling
between components, and also suggests that if we cache database information ap-
propriately, we can vastly improve performance. The latter turns out to be correct
— by simply caching relevant rows from the PROCESS and EPOCH tables,we
dramatically improve SQL performance, particularly with large database files.

In order to be able to cache correctly, we need to know where particular
database information is required. For example, if a series of menus relates solely
to a particular patient (as is mostly the case) then all other patient information can
be excluded by using the CACHE command correctly. When we exit this state,
then we can UNCACHE the relevant database tables.

8.1 A note on ‘static’ data

On the PDA, the data which define all menus and their components (contained in
the tables ITEM, MENUITEMS and ICOLTABLE) should not often (at present,
not ever) be altered on the PDA. This suggests several possible caching approaches:

1. Checking an exact SQL query string, and caching the value(s);

2. Caching depending on the particular menu being used (with or without the
preceding approach);

3. More baroque caching/coding rules (unwise).

We haven't yet implemented the above approaches.

8.2 Menu hierarchy

The hierarchy of menus (and functions which move between them) is as follows.
(Ultimately we will turn this sketch into a real diagram). Our initial caching de-
marcated the ward and patient selection (and patient searches) from all of the
other menus, which deal with a specific patient, indicated by the dotted line in the
following diagram.

8 MENU HIERARCHIES AND CACHING 215

900 (back)(wd) 920
LOG-IN --> WARD SELECTION<----->PT SELECTN <--------------
899 " (abort) “(abort)” |
I I |(back) |
| v(admit)| |
| 905 ADMIT | |
v (search) | | |
919 | | I
~-->FIND PT<-mmmmmee- | | |
| “(abort) |1 | |
| | || [eeiiiiiinnen, [...
| % . vV Vv | |
| 918 (back)(ID) 903 | |
| BY SURNAME<--------- >ALERT<----- (ID) |
I) : N |
I | : (back)] \ |

| . | COMMENT 906 |
______ K e %
. | B
..................... [CHECK 930](ignore/done) |
| |
v(next) |
907 PAIN DATA |

B B B " " “(back) |
| I | [910] | I |
I I | [MDALTY] | I I
Vv Vv Vv Vv Vv | |
915 2915 908 904 914 | |
ORALS OTHER ADD _OP REGNL IV_PCA |
: *(done) | |
I I I I
Y, v(nausea) v(done) |
====NAUSEA_RX==== <---eeeeeeememv >NEW ALERTS----->*
3915 / 909 -
/ “(abort) |

906 COMMENT | |
v(disch) | (D)
921 DISCHARGE------- >

8 MENU HIERARCHIES AND CACHING 216

8.3 Loggingin
See Section.21

Referred by

e (Nobody) — only invoked on entering main program!

Connects to

e Ward selectiong.4).

Functions used

FlagRecent

ListUsers (complex join on PERSDATA, EPOCH, PROCESS and PER-
SON)

ProcessUserNames

Retrieve

Tables used

e PERSDATA
e EPOCH

e PROCESS
e PERSON

Caching opportunities

Major delay is the massive join referred to above. The size of the PROCESS and
EPOCH files is big.

o If we could limit PERSON.pStatusver 1, and then based on this propagate
through PERSON:PROCESS.Person and thence to PROCESS:EPOCH.Process,
we might dramatically lower search tim#&s.

%But ... at present we have no ability to check for anything other than a single value match in
an Int32 field, so we would need to modify PDA routines to deal with pStatus field.

8 MENU HIERARCHIES AND CACHING 217

8.4 Ward selection
See Section.1

Referred by
e Loggingin @.3).
e Back from Find patient§.7)

e Back from Patient selection within waré.g)

Connects to
e Find patient (Searcl8.7)
o Patient selection within ward(5) — by clicking on a ward name

e (Quit) option is important.

Functions used

e ListWards

Tables used

e WARD (all components must be accessible)

Caching opportunities

These are minimal at present.

o If we later decide to highlight certain wards based on occupancy, then we
will also need to access BADOBS. It’s possible that caching might improve
speed, but unlikely (How many times will the table be accessed??). Under
such circumstances, we might cache on BADOBS.boFlag being setto 1.

8.5 Patient selection
See Sectiom.?

8 MENU HIERARCHIES AND CACHING 218

Referred by
e \Ward selectior8.4

Admit (8.6)

Alert (8.9)

New alerts §.22

Discharge .23

Connects to
e Admit (8.6)
e Alert (8.9

Functions used

e ListRooms (ROOM)

e ManyBack

e GetBadObs4Ward (BADOBS)

e FetchSurname (PERSDATA)

e FetchldNumber (PERSDATA)

¢ EnterDetailMend’

e GetAlert (BADOBS)

¢ GetPatientRoom (BADOBS)

e SetNewRoom (BADOBS, PROCESS, EPOCH)

9Note here: ReadmitPatient was a potential problem, as caching became deranged due to an
error in placement of the CACHE statements. Fixed!

8 MENU HIERARCHIES AND CACHING 219

Tables used

¢ ROOM
¢ BADOBS
PERSDATA

PROCESS

EPOCH

Caching opportunities

We already cache once weavethis menu to enter the alerts for a particular
patient. Other opportunities include:

e ROOM:Ward is the particular ward value. Might speed things a bit, but note
BADOBS is already de-normalised to speed up fetch.

e BADOBS:bolnactive being reset would limit the field, but as we only per-
form a major SELECT once, perhaps not that useful. In the light of all of
the queries of BADOBS, still perhaps an option.

e It is tempting (on entering this menu) to cache on BADOBS.Bethge
where bed values are limited to this w&tdWe cannot however then extend
this caching to EPOCH (or thence to PROCESS) as we would be eliminat-
ing other vital observations on particular patietits.

8.6 Patient admission
See Section.3

Referred by

o Patient selectio®(5).

98Again requiring that we extend caching toaamge

9If however we were to extend the functionality of our caching to permit
storage of a value other than the primary key of a row, then we might store
the Person of BADOBS, and then limit via PROCESS and EPOCH! Something
along the lines of CACHE(BADOBS.Bef#0000—4999%@Person) followed by
CACHE(BADOBS:PROCESS.Person) and CACHE(PROCESS:EPOCH.Process). Even more
complex logic would permit limiting by bolnactive.

8 MENU HIERARCHIES AND CACHING 220

Connects to
e Patient selectio® 5 on abort.

e Alerts (8.9).

Functions used

EnterDetailMenu

DoWholeAdmission

AdmitPatient (PERSON)

CreateAdmission (BADOBS)

ProcAndEpoch (PROCESS, EPOCH)

KeepPersonData (PERSDATA)

RecordASA (MEDSCORE)

RecordWeight (MEASURE)

RecordDob (PERSON)

Tables used
e PERSDATA (including check on hospital number)
e PERSON
e BADOBS
e PROCESS
e PERSDATA
e MEDSCORE
¢ MEASURE
e EPOCH

Caching opportunities

There seems to be little opportunity for useful caching in this menu.

8 MENU HIERARCHIES AND CACHING 221

8.7 Find a patient
See Section.4.

Referred by
Ward selectior8.4

Alerts (8.9);

Selection by surname(9)

New alerts §.22

Discharge .23

Connects to

e Alerts (8.9);
e Selection by surname ().

o Ward selectior8.4

Functions used

e EnterDetailMenu (PROCESS, EPOCH)

e GoSurname

Tables used

e PERSDATA (in searching on hospital number, also for GoSurname)

e PROCESS, EPOCH (of little utility in caching)

Caching opportunities

Limited.

8.8 Selection from a list of surnames
See Sectiom.5.

8 MENU HIERARCHIES AND CACHING 222

Referred by
e Find patient 8.7)
e New alerts 8.229
e Discharge .23

Connects to

e Alerts (8.9);
e Find patient 8.7)

Functions used

A lot of the functionality is similar to selection of a patient from a ward (Section
8.5). The exceptions are SearchBySurname, and GetPatientWard which resembles
GetPatientRoom.

SearchBySurname (PERSDATA, EPOCH, PROCESS, PERSON)
GetPatientWard

FetchldNumber

EnterDetailMenu

FetchSurname

Tables used
¢ PERSDATA, EPOCH, PROCESS
¢ PERSON

Caching opportunities

Despite the big join in SearchBySurname, the function is fairly fast and probably
doesn’t need any caching fiddles in its current form.

8.9 Patient alert screen

See Sectiob.6. This menu and several subsequent menus are conveniently cached
based on the patient selected, limiting both PROCESS and EPOCH dramatically.

8 MENU HIERARCHIES AND CACHING 223

Referred by

e Patient selection within ward(5)

Find patient (Searcl8.7)

Selection by surname ()

Comment 8.10

Pain datag.12

Admit (8.6)

Connects to

All of the above, apart from Admit.

Patient selection within ward(5)

Find patient (Searcl8.7)

Selection by surname(8)

Comment .10

Pain data§.12

Functions used

e FetchldNumber (PERSDATA)

FetchSurname (PERSDATA)

e |S24

e FetchASA

e FetchMedScore (EPOCH, PROCESS, MEDSCORE)
e FetchForename (PERSDATA)

e ListWards

e FetchWeight

e FetchAge

8 MENU HIERARCHIES AND CACHING 224

e WasItOn (PROCESS)

e OnOrOff

e GetMyWard (BADOBS, WARD)

e SetNewWard (PROCESS, EPOCH, BADOBYS)

Tables used

¢ PROCESS
¢ EPOCH

COMMENT (directly apart from above functions)
MEDSCORE

PERSDATA

BADOBS

o WARD

Caching opportunities

The current caching seems to have sorted out most of the problems. It is tempting
to examine the COMMENT table in more detail. We must check this out with a
vast number of comments (from IDAS)!

8.10 Comments
See Section.7

Referred by
e Alerts (8.9);

e New Alerts 8.22.

Connects to
e Alerts (8.9);
e New Alerts 8.22.

8 MENU HIERARCHIES AND CACHING 225

Functions used

o FetchldNumber

FetchSurname

MakeGeneralComment

o FindRecentProcess

ForceEpoch

FancyEpoch
ShortDate

Tables used
¢ COMMENT
e EPOCH
e PROCESS

Caching opportunities

Although we might conceivably need to tune this menu, simply caching on the
individual patient is probably sufficient (as already performed in menus leading to
the comments menu).

8.11 Epidural pop-up

See Sectio®.4and the commertiere

Referred by
e Alerts (8.9);

Connects to

e Pain data§.12

8 MENU HIERARCHIES AND CACHING

Functions used

FindRegional
FetchldNumber
LastEpoch
NewRgnEpoch
Is24

FetchEpi
RecordEpi

Tables used

As usual for the above functions. (Perhaps fill in).

Caching opportunities

Limited once we've cached PROCESS and EPOCH on the patient.

8.12 Pain data
See Sectioh.8

Referred by

Alerts 8.9);

New alerts §.22

Pain help 8.13

Add an operationd.14)
Regionals .15

IV PCA (8.17)

Oral Rx 8.19

Other modalitiesg.21)

Epidural pop-up§.11)

226

8 MENU HIERARCHIES AND CACHING

Connects to

All of the referrers above, with the exception of the epidural pop-up.

Functions used

LastEpoch

FetchidNumber

FetchSurname

PainGet, SetPain, ReplaceNull, FindPainScore, NewPainScore
SpawnProblem, SetProblem, FetchProblem
ChecklsEvent, CheckNonevent
ProcBetween

JustKillregional

FailAndReload

KillManyProcs

KillProc

JustKillOther

JustKillOrals

NewProc

Tables used

EPOCH,PROCESS
PERSDATA
PAINSCORE
ISPROBLEM
NONEVENT

227

8 MENU HIERARCHIES AND CACHING 228

Caching opportunities

Most important is caching the individual (already done). Although we might po-
tentially cache at several other points, we would probably derive most benefit from
caching on the menu components themselves rather than user data tables.

8.13 Pain help

See Sectioh.18.1 Only entered on clicking on the header of the pain information
menu.

Referred by
e Pain data§.12

Connects to

e Pain data.12

Functions used

ShortDate

FindAdministration

Tables used

o PAINSCORE, EPOCH, PROCESS
o PCA

Caching opportunities

Minimal?

8.14 Add an operation
See Section.9

8 MENU HIERARCHIES AND CACHING

Referred by
e Pain data§.12

Connects to

e Pain data§.12

Functions used

ShortDate

FetchldNumber

FetchSurname

InsertOpData

ListOpTypes
DatedPandE

Tables used

e EPOCH
e PROCESS
e SURGTYPE, SURGETYPEOB

Caching opportunities

Minimal?

8.15 Regionals

See Sectio’.10 This section iverycomplex.

Referred by
e Pain data§.12

e Regional help§.16

229

8 MENU HIERARCHIES AND CACHING

Connects to

As for referrals.

Functions used

LastEpoch
SetEvent
FindRegional
FetchldNumber
NewRgnEpoch
ChecklInfusion
FindInfuObs
ProcBetween
RecentProcobs
RecordEpi
FetchEpi
PcaRecord
pcAble

GetPca
FindTopups
InfuRateSet
SetTotal
FindTotal
ListDrugs
GetlnfusionLabel

EpidinfuSet

230

8 MENU HIERARCHIES AND CACHING 231

e FindAdministration
¢ FailAndReload

e NewRgnProcinfu
e ChangeEpidinfusion
e NewEpoch

¢ KillProc

e TopupSet

¢ NewRxObs

e NewPca

e |sltPcra

e TogglePcea

e Stoplnfusion

Tables used
¢ RX
e PROCESS, EPOCH
¢ RGNOBS, INFUSIONOBS, RXOBS

Caching opportunities

We need to explore these in detail as the menu can be a little sluggish, not sur-
prising in view of the complexity of the database access. We might do something
with the RGNOBS, RXOBS or INFUSIONOBS tables, depending on profiling.
We should also look into caching ‘static’ menu elements.

8.16 Regional help menu
See Section.18.3

Referred by
¢ Regionals$.10

8 MENU HIERARCHIES AND CACHING

Connects to

¢ Regionals$.10

Functions used

e FindRegional (ProcBetween)
e FetchEpi
e ShortDate

Tables used

¢ PROCESS
¢ RGNOBS

Caching opportunities

Need exploration.

8.17 IV PCA

See Section.11 Resembles the above regional meaiip.

Referred by
e Pain data§.12

e PCAhelp 8.19

Connects to

e Pain data§.12
e PCAhelp 8.19

232

8 MENU HIERARCHIES AND CACHING

Functions used

JustKillPca
SetNonevent
LastEpoch
FindAdministration
FetchldNumber
FetchSurname
FailAndReload
KillManyProcs
CheckNonevent
NewProc
GolvPca
PcaRecord
GetPca

SetTotal
FindTotal
InfuRateSeet
FindInfuRate
GetlnfusionLabel
IvinfuSet
PcaNoteSettings
GetPcaSet
NewlvDrug
Changelvinfusion

NewEpoch

233

8 MENU HIERARCHIES AND CACHING

Tables used

¢ PROCESS
o RX
PCASETTINGS

¢ RXOBS
e PCA

Caching opportunities

Unclear.

8.18 PCA help menu
See Sectio®.18.2

Referred by
e IVPCA (8.17

Connects to

e IVPCA (8.1

Functions used

e FindAdministration

e ShortDate

Tables used

¢ EPOCH
e PCA

Caching opportunities

Needs research.

234

8 MENU HIERARCHIES AND CACHING

8.19 Oral therapy
See Section.13

Referred by

Pain data§.12
Nausea Rx&.20

Connects to

Pain datag§.12
Nausea Rx{.20

Functions used

JustKillOrals
LastEpoch
SetEvent
FetchldNumber
FetchSurname
CheckNonevent
FindAdministration
SetNonevent
KillManyProcs
GetDrugProcs
GetTradeName
AskStopDrug
FancyEpoch
NewRxObs2
Set24

235

8 MENU HIERARCHIES AND CACHING

o Get24hr
e ListDrugs
e SetDrug

e ByFormulation

Tables used

e RX

e DRUG
e EPOCH
e RXOBS

Caching opportunities

Need clarification. Requirement is unclear.

8.20 Nausea Rx
See Sectiom.14

Referred by
e New alerts .22

e Other modalities&.21)

e Oral therapy §.19

Connects to

e New alerts 8.229
e Other modalities&.21)

e Oral therapy §.19

236

8 MENU HIERARCHIES AND CACHING

Functions used

e LastEpoch

FetchldNumber, FetchSurname

GetNauseaRxProcs

GetTradename

AskStopDrug
Set24

Get24hr

SetDrug

Tables used

¢ PROCESS
o RX

Caching opportunities

Unclear.

8.21 Other modalities
See Sectio®.15

Referred by/connects to

e Pain data§.12

Functions used

e LastEpoch
o FetchldNumber, FetchSurname
e CheckNonevent

e FindAdministration

237

8 MENU HIERARCHIES AND CACHING

GoOther
Get24hr

Set24
GetDrugProcs
AskStopDrug
GetTradeName
ListDrugs
SetDrug

ByFormulation

Tables used

PROCESS, EPOCH
RX, RXOBS

Caching opportunities

To clarify?

8.22 New Alerts
See Sectio®.16

Referred by

Pain datag§.12
Nausea Rx{.20
Discharge .23

238

8 MENU HIERARCHIES AND CACHING

Connects to

e Pain data§.12

Nausea Rx&.20

Discharge .23

Patient selection3(5)

Find patient 8.7)

Functions used

LastEpoch, FetchldNumber, FetchSurname

UnFlagMe

PatientDied

FetchProblem, SpawnProblem, SetProblem

FindRecentProcess, NewProc, NewEpoch, NewProblem

EndProcByType

Tables used
e PERSON, EPOCH, PROCESS
e BADOBS
e ISPROBLEM

Caching opportunities

Needs work.

8.23 Discharge
See Section.17.

Referred by

e new alerts §.229

239

8 MENU HIERARCHIES AND CACHING

Connects to

e new alerts §.229
e Patient selectiong(5)

e Find patient 8.7)

Functions used

e FetchldNumber, FetchSurname
e DoDischarge

e GetDProc

e PostDProc

¢ KillManyProcs

Tables used

e PROCESS

Caching opportunities

Caching is unlikely to help.

240

9 PDA SCRIPTING CONVENIENCES 241

9 PDA scripting conveniences

In order to decrease the burden of having long scripts or convoluted PDA code
(and because the scripting language is so convenient) we exported a lot of func-
tionality to scripts. We've slightly clunkily included these scripts inBhENUS.sq]

file. Here they are:

INSERT INTO FUN (fKey, fBody, fName)
VALUES (121, 'QUERY(SELECT ITEM.iIID FROM ITEM WHERE
ITEM.iName = "$[]"),
'cSQYLY);

INSERT INTO FUN (fKey, fBody, fName)

VALUES (122, 'QUERY(SELECT
MENUITEMS.miX,MENUITEMS.miY,MENUITEMS.miW,MENUITEMS.miH
FROM MENUITEMS WHERE MENUITEMS.miltem = $[])’,

'cSQ2);

INSERT INTO FUN (fKey, fBody, fName)VALUES(123,
'QUERY(SELECT ITEM.iText FROM ITEM WHERE ITEM.ID = $[),
'cSQ3);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (124, 'QUERY(SELECT ITEM.ilnitial,ITEM.iText,ITEM.iType
FROM ITEM WHERE ITEM.ID = $[]),
'SQ4);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (125, 'QUERY(SELECT ICOLTABLE.irltem,ICOLTABLE.irFraction
FROM ICOLTABLE WHERE ICOLTABLE.IfTBL = $[]
AND ICOLTABLE.irOrder = 1Y,
'cSQ5Y);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (126, 'QUERY(SELECT ITEM.iType,ITEM.ilnitial FROM ITEM
WHERE ITEM.ID = $[]),
'cSQ6’);

The following SELECT statement is rather important. It selects all menu items
(the relevant properties) for a given menu.

INSERT INTO FUN (fKey, fBody, fName)
VALUES (127, 'QMANY(SELECT miEnabled,miGroup,
miX,miY,miW,miH,miltem FROM MENUITEMS WHERE miMenu = $[]
ORDER BY MENUITEMS.miOrder DESC)’,
'cSQ7);

10 ADDENDUM: SPECIFIC STUFF 242

INSERT INTO FUN (fKey, fBody, fName)
VALUES (131, 'QUERY(SELECT ITEM.ilnitial FROM ITEM
WHERE ITEM.ID = $[J)->RUN’,
cSQ8);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (132, 'QUERY(SELECT ITEM.iLines FROM ITEM
WHERE ITEM.ID = $[),
'cSQ9);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (133, 'QUERY(SELECT ITEM.iResponse FROM ITEM
WHERE ITEM.IID = $[]),
'cSQ10Y;

INSERT INTO FUN (fKey, fBody, fName)
VALUES (136,
"QMANY(SELECT irltem,irName,irEnabled,irFraction
FROM ICOLTABLE WHERE irTBL = $[] ORDER BY irOrder DESC)’,
'cSQ11Y;

INSERT INTO FUN (fKey, fBody, fName)
VALUES (140, 'QUERY(SELECT ITEM.ilnitial FROM ITEM
WHERE ITEM.ID = $[])->RUN,
'cSQ12);

INSERT INTO FUN (fKey, fBody, fName)
VALUES (141, 'COPY->QUERY(SELECT UIDS.u$[]
FROM UIDS WHERE UIDS.uKey = 1)->
COPY->BURY->#1->ADD->
DOSQL(UPDATE UIDS SET UIDS.u$[=9%[]
WHERE UIDS.uKey = 1)->DIGUP’,
'NEWKEY”);

*

-- this signals the end of the file!

The NEWKEY function is really odd, as we use it to generate new key values
for arbitrary columns, something that we should really make atomic, and write as
C++ code! (The Perl already has this functionality).

10 Addendum: specific stuff

For a particular institution, you will need to insert an enormous amount of very
specific data. Although we might leave you to your own devices, | thought it
prudent to provide an example of what you're up against. Here follow tentative
data for my institution, written to the filspecific.sql

10 ADDENDUM: SPECIFIC STUFF 243

10.1 Ward specifics
-- population of WARD table:

INSERT INTO WARD (ward, swrdText)VALUES(1, 'new’);

In the following, the room with code 100 corresponds to a generic room in the
‘unlisted’ ward!

-- population of ROOM table etc:
INSERT INTO ROOM (room, Ward, srmText)VALUES(100, 1, '?");

INSERT INTO BED (bed, Room, sName)VALUES(10000, 100, '?’);

10.2 Drug-specific data
10.2.1 A note on drug codes

Different countries have different codes. For example, in the USA, the FDA man-
dates a ten digit ‘National Drug Code’ or NDI€. The NDC is often used in
HIPAA (another US set of regulations) with a leading zero in one of the fields,
causing much confusiortiere’sthe blurb!°* Also from the USA, the venerable
AMA DRUG Evaluation Subscription classification scheme hasn’t been changed
since 1976! On packages in the USA, the barcode begins with 3 or 03 (UPC-A and
EAN-13 respectively) and there’s a check-digit at the end. The UPC or universal
product code dates back to 1973! There are also HCPCS codes,

On the international scene, we have the WHO *“International Nonproprietary
Names” (http://www.who.int/medicines/services/inn/en/). The INN may differ
from the US Adopted Name but should be the same as the British Approved Name
(defined in the British Pharmacopoeia). The BAN is useful in that unique generic
names are assigned to drug combinations! There should now be harmonisation
between the BP and the European Pharmacopoeia.

We also have the WHQO'’s “ATC codes”, which provide a hierarchical classi-
fication of drugs by class. ATC stands for ‘Anatomical Therapeutic Chemical’,
and is a hierarchical system which classifies substance according to organ/system
affected, as well as pharmacological, chemical and therapeutic properties. A term

100This comprises a 4 or 5-digit labeller code which describes the drug ‘manufacturer’, followed
by a product code and a package code. The length of each of the 3 ‘segments’ varies depending
on the FDA and the company.

Olhttp://www.fda.gov/cder/ndc/

http://www.fda.gov/cder/ndc/

10 ADDENDUM: SPECIFIC STUFF 244

commonly associated with ATC is DDD, for ‘Defined Daily Dose’. ATC repre-
sents an extension of the older European Pharmaceutical Market Research Associ-
ation classification system (EphMRA). ATC has five levels, the first containing 14
main groups (A-D,G,H, J,L, M, N, P, R, S, V), and things degenerating into chaos
thereafter. A drug has only one place in this system as it is regarded as having a
main active ingredient and a main therapeutic use. Where there is controversy, a
WHO committee decides!

A listing of codes is not readily found on the 'net, but try: http://www.msupply.org.nz/
or Google ['ATC system” caries belladonna].

10.2.2 Epidural infusions

This needs further shaping; we have recently (5/2007) moved population of the
DRUG table into the CSV import section BerlPgm.tex

INSERT INTO DRUGFORM (drugform, dformText)
VALUES (1, ’Epidural’);

10.2.3 Intravenous PCA

Exported to CSV, similar to the above. Rather artificial.

INSERT INTO DRUGFORM (drugform, dformText)
VALUES (8, 'IV PCA));

10.2.4 Other IV, non-PCA, and SC

INSERT INTO DRUGFORM (drugform, dformText)
VALUES (4, 'IV);

The following (for subcutaneous Rx) is a bit of a hack:

INSERT INTO DRUGFORM (drugform, dformText)
VALUES (9, 'SCY;

10.2.5 Orals

INSERT INTO DRUGFORM (drugform, dformText)
VALUES (10, 'Tabs’),
(17, 'Syrup’),
(13, 'Caps);

10.2.6 Rectal (PR) drugs

INSERT INTO DRUGFORM (drugform, dformText)
VALUES (20, 'Suppository”);

10 ADDENDUM: SPECIFIC STUFF 245

10.2.7 Transdermal drugs
INSERT INTO DRUGFORM (drugform, dformText)

VALUES (30, 'Patch’);
10.2.8 Special infusions

From above, DRUGFORM code 8 is an intravenous PCA infusion. See the CSV
imports, as noted above.

10.3 Test data for patient selection

To allow testing of patient selection from a ward, we formerly rather artificially
populated certain tables using SQL statements. We now do so by importing CSV
files (SeePerlPgm.texand have removed the SQL previously residing here!

*

-- this signals the end of the file!

The above lines terminate the file and we shouldn’t try to add more SQL sub-
sequent to these lines!

10 ADDENDUM: SPECIFIC STUFF

10.4 4 flist of all functions

Finally, here’s a table containing links to all functions, for convenience (this still

needs to be sorted in order, and a few functions are missing).

ListWards

FetchldNumber
GetPmFlag
CreateAdmission
RecordASA
GetMyWard
FetchMedscore
WasltOn
NewProc
ForceEpoch
ListConsultants
SetPain
PainGet
SetNonevent
ProcBetween
NewRgnEpoch
RecordEpi
FindInfuObs
EpidinfuSet
NewEpoch
FailAndReload
NewRxObs
NewPca
TogglePcea
GolvPca
Changelvinfusion
GetPcaSet
JustKillPca
GetDrugProcs
NewRxObs?2
FetchProblem
GoOrals
GetTradeName
AskStopDrug

EnterDetailMenu
Retrieve
GetPatientRoom
DoWholeAdmission
ProcAndEpoch
RecordASA
SetNewWard
FetchASA
WasBetween
OnOrOff
FancyEpoch
NoteConsultant
FindPainScore
ReplaceNull

Fail
InsertOpData
FindRegional
KillProc

FindInfuRate
NewRgnProcinfu
NewProc
TopupSet
PcaRecord

Able
KillManyProcs
IvinfuSet
PcaNoteSettings
FindTotal
JustKillOrals
ListDrugs
SpawnProblem
SetProblem
GoOther
Get24hr
SearchBySurname

GetBadobs4Ward
FetchSurname
SetNewRoom
AdmitPatient
KeepPersonData
LastEpoch
FetchForename
FindRecentProcess
EndProcByType
MakeGeneralCommer
ShortDate
FetchConsultant
NewPainScore
CheckNonevent
ListOpTypes
JustKillRegional
RecentProcObs
FetchEpi
FindAdministration
InfuRateSet
ChangeEpidinfusion
GetlInfusionLabel
FindTopups
GetPca

IsltPcra
Stoplinfusion
NewlvDrug
NewPcaSet
SetTotal

GoOirals

SetDrug
NewProblem
DoDischarge
JustKillOther
Set24
GetPatientWard

—

246

10 ADDENDUM: SPECIFIC STUFF 247

DatedPandE ReadmitPatient ChecklIsEvent
NewNonevent SetEvent ListUsers
GetRegionalModes ChecklInfusion ListRooms
RecordWeight FetchWeight GetNauseaRxProcs
PatientDied GetDProc PostDProc
FlagRecent GetAlert UnFlagMe

Is24 - RecordDob
FetchAge

Click on one of the above links to visit the function.

11 CHANGE LOG 248

11 Change Log

From version 0.95, we introduce a change log.

11.1 Version 0.95

1. We've altered the two invocations of SetNewWard, so that moving the pa-
tient to a new ward is confirmed. (ldeally this change should be moved to
within SetNewWard, but we haven’t yet done so).

2. On 31/3/2008 we introduced the error handling menu. There are several
possible ways of doing this:

(a) Attach the PAINERROR table directly to a process (e.g. the offending
process, or the observation process)

(b) Attach this table to the relevant EPOCH (or create one)

(c) Create a separate type of PROCESS for errors, and attach the table
either directly, or via an EPOCH.

Advantages of the last approach are the minor one that all patients with
error processes can easily be identified (but a query linking back from the
PAINERROR table isn't much of a hassle), and that we are ’isolating’ the
errors from other processes, retaining error-specific processes and epochs.
This approach seems cleaner, and does perhaps allow us to more generally
describe errors — If we are ‘in the epidural menu’ but identify an error, we
might not wish to associate the error identified with the epidural process.
The last mentioned ‘benefit’ might also be considered a liability in that we
are losing some structure — we associate the error with the error process
and not directly with the offending process, only making this association

by implication. This last argument is a pretty potent one for not having a
separate error process, so we’ll discard the third option.

Should we attach the PAINERROR table directly to a PROCESS, or indi-
rectly via an EPOCH? The latter does give us a finer structure, and means
that we don’t have to add a timestamp to each PAINERROR table entry. It
allows us to associate several errors with a particular EPOCH, and the errors
with a given period of observation (but only if this already exists), a fairly
good argument for the EPOCH approach.

There are two residual problems:

(a) We need a mechanism for generally identifying errors not associated
with one of the four ‘modalities’ or ‘modality groups’ (regional, 1V

11 CHANGE LOG 249

PCA, enteral and ‘other’) — this might involve attaching an error
through an epoch on the current general observation process, an at-
tractive option;

(b) With the current structure of our enteral and ‘other’ menus, we cannot
easily associate the error table directly with a given drug! Options here
might be to:

¢ Alter the menu to have an error button next to each item (cumber-
some and undesirable)

¢ Alter the response to clicking on a drug (either having two ques-
tions, one of them “Stop the drug?” and the other “Report error”;
or opening up a sub-menu, surely both unacceptable in terms of
ergonomics)

e Have a more complex error menu for these choices, where we pull
out the drugs (processes) and then permit a single click on a drug
to indicate that ‘this was the drug/process involved.

e Not go down to the drug level, here simply attaching the record
of the error to a more generic observation process, a somewhat
unattractive but not totally excluded option.

My ‘solution’ is as follows:

(a) The main error menu lists candidate processes (with their date, type,
and associated drug, if any)

(b) The user clicks on a table line which represents one of these processes

(c) A subsidiary menu pops up permitting attachment of a PAINERROR
entry to the most recent observation on that process.

As a minimum we introduce an [Err] button in four menus, related to re-
gionals, PCA, orals and ‘other’, based on the creation of a PAINERROR
menu inAnalgesiaDBpartl.tex There are several things we need to do
apart from creating and inserting the new menu into the database, and the
relevant button into the menus. These include:

(a) Inserting the associated FUN table entries;

(b) Ensuring the relevant PAINERROR key generator is inserted into UIDS,
and the XTABLE and xCOLUMN entries are updated manually!

ALTER TABLE UIDS ADD uPainerror integer;
UPDATE UIDS SET uPainerror = 1000;
-- next fix xtable/xcolumn entries:

11

CHANGE LOG

select xtakey

250

FROM XTABLE WHERE xTaname = 'EPOCH’

-- gives eg 103
select uxtable, uxcolumn, uxlimit from uids;

--- this gives
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO

constraint
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO
INSERT INTO

INSERT INTO

INSERT INTO

eg {134, 391, 373}
XTABLE (xTaKey, xTaName) VALUES (134, 'ERRTYPE);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize, xCoTabile
VALUES (391, ’cold’, T, 4, 134);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize, xCoTable
VALUES (392, ’errtype’,’l’, 4, 134);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize,xCoTable)
VALUES (393, ’etText’, V', 32, 134);
XTABLE (xTaKey, xTaName) VALUES (135, 'PAINERROR’);
XLIMIT (xLiKey, xLiName, xLiType, xLiColumn)
VALUES (373, ’baderrtype’,’P’, 392);

baderrtype primary key (errtype),

XCOLUMN (xCoKey, xCoName, xCoType, xCoSize, xCoTable
VALUES (394, ’cold’, I, 4, 135);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize, xCoTable
VALUES (395, ’painerror’,’l’, 4, 135);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize,xCoTable)
VALUES (396, 'Epoch’, 'I', 4, 135);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize, xCoTable
VALUES (397, ’Errtype’,’l’, 4, 135);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize,xCoTable)
VALUES (398, 'ErrStamp’,’S’, 14, 135);
XCOLUMN (xCoKey, xCoName, xCoType, xCoSize,xCoTable)
VALUES (399, ’'peText’, V', 32, 135);
XLIMIT (xLiKey, xLiName, xLiType, xLiColumn)
VALUES (374, ‘’badpnerr,P’, 395);
XLIMIT (xLiKey, xLiName, xLiType, xLiColumn, xLiTable)

VALUES (375, 'badPEepoch’,’F’,396 ,103);
XLIMIT (xLiKey, xLiName, xLiType, xLiColumn, xLiTable)
VALUES (376, 'badPEtype’,’F’,397 ,134);

--- we must also set a new XxCOLUMN value for uPainerror (subtle!)

INSERT INTO

XCOLUMN (xCoKey, xCoName, xCoType, xCoSize,xCoTable)
VALUES (400, 'uPainerror, 'I’, 4, 4);

UPDATE UIDS SET uxTable = 136, uxColumn = 401, uxLimit = 377;

11

CHANGE LOG

also affected! [EXPLORE]
(Note how the PDA silently failed when we had two spaces thus “DOSQL(INSERT
INTO PAINERROR(” in ReportError. [EXPLORE LATER])

In the epidural menu (904) we must also move the ‘low BP’ text and
buttons up and out of the way! [AND FIX SQL ERROR which oc-

curred with new prescription!?]

UPDATE MENUITEMS SET miX
UPDATE MENUITEMS SET miX
UPDATE MENUITEMS SET miX

251

(c) Ensuring the tables are exported to the PDA (this is largely related to
the x-tables noted above)

(d) Inserting the table names ERRTYPE and PAINERRORXUI®G.LST
(e) Ensuring that on making the associated patients ‘cold’, these tables are

= 0.75, miY = 0.68 WHERE miUid = 43:
= 0.85, miY = 0.68 WHERE miUid = 43!
= 0.60, miY = 0.68 WHERE miUid = 43

(g) Some PROCTYPE entries WERE a tad long-winded, for example ‘en-

teral drug administration’. We must shorten this to ‘Enteral drug’.
Here’s the big list . ..

UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE

PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature
rptNature

='Enteral drug” WHERE PROCTYPE
='Epidural catheter WHERE PROCT
='Epidural drug” WHERE PROCTYPE
='Epidural PCEA’ WHERE PROCTYF
='Spinal drug” WHERE PROCTYPE
='IV access’ WHERE PROCTYPE =
='IV infusion” WHERE PROCTYPE =
='IV boluses’ WHERE PROCTYPE =
=V PCA’ WHERE PROCTYPE = 3
='Transdermal drug” WHERE PROCT
='SC drug’ WHERE PROCTYPE = :
='Per-rectal drug” WHERE PROCTYF
='Nasal drug” WHERE PROCTYPE -
='interscalene catheter’ WHERE PRC
='interscalene infusion” WHERE PRO
='infraclavicular catheter’ WHERE PR
=’infraclavicular infusion” WHERE PR
='axillary catheter WHERE PROCTY
=’axillary infusion” WHERE PROCTY!
=’'interpleural catheter WHERE PRO(
=’interpleural infusion” WHERE PROC

11

CHANGE LOG

UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE
UPDATE

PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE
PROCTYPE

SET
SET
SET
SET
SET
SET
SET
SET
SET

252

rptNature ='femoral catheter’ WHERE PROCTY
rptNature ='femoral infusion” WHERE PROCTY
rptNature =’sciatic catheter’ WHERE PROCTYF
rptNature =’sciatic infusion” WHERE PROCTYF
rptNature =’incisional catheter’ WHERE PROCT
rptNature =’incisional infusion” WHERE PROCT
rptNature =DATA” WHERE PROCTYPE = 1

rptNature =’ADMISSION’ WHERE PROCTYPE
rptNature ='24hr check’ WHERE PROCTYPE -

All changes required are contained in the supplementary IBRADE20080405.SQL

3. There is a problem on the PC where we try to re-admit a patient. As things
stand the response to item 86 (search for “WHERE iID = 86”) means that
a previous admission will be identified as current; this is not utterly beyond
the pale, but we had to tweak the response to allow readmission! We did

three things:

(a) Setthad variable to the internal database ID of the patient, as required
by ProcAndEpoch, called from within ReadmitPatient;

(b) Modify the query to determine if there is a BADOBS that is both not
inactive and not cold — if so, simply warn, but otherwise readmit;

(c) M

UPDATE ITEM SET iResponse
'NULL->SET (hospitalnumber)->
COPY->&G0o0dNhi->BOOLEAN->SKIP->=Fail(Invalid NHI)->
UPPERCASE->COPY->SET(hospitalnumber)->
QUERY(SELECT PERSDATA.pdoPerson FROM PERSDATA
WHERE PERSDATA.pdoHospNo = "$[]")->

QOK->SKIP->RETURN->

COPY->SET(id)->
QUERY(SELECT BADOBS.Bed

FROM BADOBS WHERE BADOBS.Person = $[]] AND BADOBS.bolnactive
AND BADOBS.cold IS NULL)->

QOK->SKIP->=ReadmitPatient->

#10000->DIV->INTEGER->

QUERY(SELECT WARD.swrdText FROM WARD
WHERE WARD.ward = $[))->

11

CHANGE LOG 253

Alert(Patient is in Ward $[]!)->
POPMENU(#0)->DISCARD->DISCARD->MENU(0)’
WHERE iID = 86;

UPDATE FUN SET fBody =

'COPY->$[id]->DOSQL(UPDATE PROCESS SET cold=3 WHERE ProcType
BURY->"Process"->KEY->copy->$[id]->now->now->me->DIGUP->
DOSQL(INSERT INTO PROCESS
(process,Person,rStart,rCreated,rPlanner,ProcType)

VALUES($[],$[, TIMESTAMP "$[]”, TIMESTAMP "$[]”,$[],$[]))->
"Epoch"->KEY->copy->BURY->SWOP->now->me->

DOSQL(INSERT INTO EPOCH(epoch,Process,oMade,Person)
VALUES($[],$[], TIMESTAMP "$[]",$[]))->DIGUP’ WHERE fKey = 112;

UPDATE FUN SET fBody = 'CONFIRM(Re-admit patient?)->SKIP->MENU(0)->
#3->&ProcAndEpoch->BURY->
"Badobs"->KEY->
$[ward]->#10000->MUL->
DIGUP->X->
COPY->
DOSQL(UPDATE BADOBS SET bolnactive=1 WHERE Person = $[])->
DOSQL(INSERT INTO BADOBS(badobs,Bed,Epoch,Person,boFlag)
VALUES($[],%(],%[],%[],0))->
#1->&ProcAndEpoch->
MENU(DETAILS) WHERE fKey = 239;

The big question is ProcAndEpoch (function 112). If the process already
exists and is not cold, then we should either inactivate that process, or sim-
ply return the old epoch! Now ProcAndEpoch is only used by CreateAd-
mission and ReadmitPatient. Thus, for this patient, we have ProcAndEpoch
inactivate similar processes, if not already done.

WE HAVE A PROBLEM! ReadmitPatient at present requires that the per-
sonis in X (not the ward), despite ProcAndEpoch requiring the same value
in $[id]. We must thus SetX to the patient ID, so we modify ReadmitPatient
to do this.

Check that the upgrade functions on the PDA (NB sqgl). NO! Now none of
admission, readmission or identification of current admission works. Item
86 is presumably stuffing things up. When we modify and export this item,
even an Alert fails to occur??

11 CHANGE LOG 254

The problem was a buffer length of 512 into which the new iResponse didn’t
fit EXPLORE THIS ‘SILENT’ FAILURE — See CProgMain.tex relen and
glen (now 1024)].

4. Update ‘New patients’ button to go dark (toggle) if new patients present:

UPDATE ITEM SET ilnitial = '$[activeW]->"new"->IN->NOT->SKIP->TOGGLE" WF

5. Add IV paracetamol. The DRUGFORM entry is 4 (IV). The DRUG is
new 'IV Paracetamol’, a bit of a hack at 5120. We then reference this as
'IV bolus usage’ with a drUsage value of 2. We manually generate the
drugusage key.

INSERT INTO DRUG (drug, dTrade, DrugForm) VALUES (5120, 'IV paracetamc
INSERT INTO DRUGUSAGE (drugusage, Drug, drUsage) VALUES (56, 5120, -

6. Exploration of modifications to FAIL verb. See also CProgMain.tex, notes
for v 0.95. FAIL is used sparingly, by items 422 and 2422 to prevent their
creation if inappropriate (both related to pethidine PCEA); by &GetAlert,
which is only used by item 9923 with similar intent; but also in the &Fall
routine which itself is invoked from many places. The 9923 item simply
fails to create a checkbox in the Ward menu if the person has been dis-
charged.

&Fail is invoked as such only by SetTotal, as it is usually declared as =Fail
(this is largely because of the current deficiency). If we examine all of these
instances, (including SetTotal) the intention is for FAIL to completely fail.
There thus seems to be no reason not to modify the functionality of FAIL in
both Perl and PDA versions.

7. Altered KiwiDate to also accept a slash as the separator!

8. The entry (honest) menu now displays date and time, and provides an option
to quit if the date/time are incorrect. This is mainly for use on the PDA, but
also clearly has applicability on the desktop machine.

